Farxiga’s DAPA-CKD trial at ESC

Conference call for investors and analysts
Forward-looking statements disclaimer

In order, among other things, to utilise the 'safe harbour' provisions of the US Private Securities Litigation Reform Act of 1995, AstraZeneca (hereafter ‘the Group’) provides the following cautionary statement: this document contains certain forward-looking statements with respect to the operations, performance and financial condition of the Group, including, among other things, statements about expected revenues, margins, earnings per share or other financial or other measures. Although the Group believes its expectations are based on reasonable assumptions, any forward-looking statements, by their very nature, involve risks and uncertainties and may be influenced by factors that could cause actual outcomes and results to be materially different from those predicted. The forward-looking statements reflect knowledge and information available at the date of preparation of this document and the Group undertakes no obligation to update these forward-looking statements. The Group identifies the forward-looking statements by using the words 'anticipates', 'believes', 'expects', 'intends' and similar expressions in such statements. Important factors that could cause actual results to differ materially from those contained in forward-looking statements, certain of which are beyond the Group’s control, include, among other things: the risk of failure or delay in delivery of pipeline or launch of new medicines; the risk of failure to meet regulatory or ethical requirements for medicine development or approval; the risk of failure to obtain, defend and enforce effective intellectual property (IP) protection and IP challenges by third parties; the impact of competitive pressures including expiry or loss of IP rights, and generic competition; the impact of price controls and reductions; the impact of economic, regulatory and political pressures; the impact of uncertainty and volatility in relation to the UK’s exit from the EU; the risk of failures or delays in the quality or execution of the Group’s commercial strategies; the risk of failure to maintain supply of compliant, quality medicines; the risk of illegal trade in the Group’s medicines; the impact of reliance on third-party goods and services; the risk of failure in information technology, data protection or cybercrime; the risk of failure of critical processes; any expected gains from productivity initiatives are uncertain; the risk of failure to attract, develop, engage and retain a diverse, talented and capable workforce; the risk of failure to adhere to applicable laws, rules and regulations; the risk of the safety and efficacy of marketed medicines being questioned; the risk of adverse outcome of litigation and/or governmental investigations; the risk of failure to adhere to increasingly stringent anti-bribery and anti-corruption legislation; the risk of failure to achieve strategic plans or meet targets or expectations; the risk of failure in financial control or the occurrence of fraud; the risk of unexpected deterioration in the Group’s financial position; and the impact that the COVID-19 global pandemic may have or continue to have on these risks, on the Group’s ability to continue to mitigate these risks, and on the Group’s operations, financial results or financial condition. Nothing in this document, or any related presentation/webcast, should be construed as a profit forecast.
Agenda for today’s conference call

1. Introduction by Pascal Soriot
2. Presentation by Prof. Hiddo L. Heerspink
3. Q&A
Presenters

Pascal Soriot
Executive Director and
Chief Executive Officer

Hiddo L. Heerspink
Professor Clinical Trials and Personalized Medicine
University Medical Center Groningen

Available for Q&A

David Wheeler
Professor of Kidney Medicine
University College London

Ruud Dobber
Executive Vice President
BioPharmaceuticals Business Unit

Mene Pangalos
Executive Vice President
BioPharmaceuticals R&D

Elisabeth Björk
Senior Vice President
Late CVRM

David Wheeler
Professor of Kidney Medicine
University College London

Ruud Dobber
Executive Vice President
BioPharmaceuticals Business Unit

Mene Pangalos
Executive Vice President
BioPharmaceuticals R&D

Elisabeth Björk
Senior Vice President
Late CVRM

David Wheeler
Professor of Kidney Medicine
University College London

Ruud Dobber
Executive Vice President
BioPharmaceuticals Business Unit

Mene Pangalos
Executive Vice President
BioPharmaceuticals R&D

Elisabeth Björk
Senior Vice President
Late CVRM

David Wheeler
Professor of Kidney Medicine
University College London

Ruud Dobber
Executive Vice President
BioPharmaceuticals Business Unit

Mene Pangalos
Executive Vice President
BioPharmaceuticals R&D

Elisabeth Björk
Senior Vice President
Late CVRM
Farxiga continues to deliver

DAPA-CKD yet another important milestone
Follows successful US launch in heart failure

- **2018**: Positive DECLARE data in a broad patient population with *type-2 diabetes*
- **2019**: Ground breaking results in *heart failure* (HFrEF) patients with and without type-2 diabetes
- **2020**: Unprecedented data in *chronic kidney disease* (CKD) in patients with and without type-2 diabetes. First SGLT2 inhibitor to show positive data in a broad CKD population

Future data readouts:
- **2021**: Additional *heart failure* data: DELIVER (HFpEF)
- **2021+**: Combination data including AZD9977 combo
CKD is currently highly underdiagnosed with significant morbidity & mortality

- Increase awareness
- Expand early diagnosis
- Transform CKD management

CKD - low awareness and many undiagnosed patients

- 1 in 10 people around the world is living with CKD¹
- Most adults (90%) with CKD in the US do not know they have it²
- Only ~12% of Stage 3 CKD patients are diagnosed in the US³
- Overall Medicare costs for people with CKD were over $84 billion in the US in 2017⁴

Sources:
Innovative, complementary CVRM portfolio

Diabetes
- **farxiga** (dapagliflozin)
- **BRILINTA** ticagrelor tablets

Heart Failure
- **farxiga** (dapagliflozin)
- **LOKELMA**
 - *Enabling effective treatment for HF*

Cardiovascular
- **farxiga** (dapagliflozin)
- **BRILINTA** ticagrelor tablets

Kidney Disease
- **farxiga** (dapagliflozin)
- **ROxadustat**

Pipeline includes:
- cotadutide (GLP-1/glucagon co-agonist) NASH
- AZD4831 (MPO inhibitor) HFpEF
- AZD5718 (FLAP inhibitor) CAD
- AZD9977 + Farxiga (MCR modulator/SGLT2) HFrEF with CKD
- AZD2693 (PNPLA3 inhibitor) NASH

1. Glucagon-like peptide-1
2. Non-alcoholic steatohepatitis
3. Myeloperoxidase
4. Heart failure with preserved ejection fraction
5. 5-Lipoxygenase activating protein
6. Mineralocorticoid receptor
Dapagliflozin in Patients with Chronic Kidney Disease
DAPA-CKD

Hiddo L. Heerspink
Department of Clinical Pharmacy and Pharmacology
University Medical Center Groningen
Disclosures

• HJLH is a consultant for AbbVie, AstraZeneca, Bayer, Boehringer Ingelheim, Chinook, CSL Pharma, Gilead, Janssen, Merck, Mundi Pharma, Mitsubishi Tanabe, Novo Nordisk, and Retrophin. He has received research support from Abbvie, AstraZeneca, Boehringer Ingelheim and Janssen.
Rationale for the DAPA-CKD trial

- Chronic kidney disease (CKD) is an important contributor to cardiovascular (CV) morbidity, all-cause mortality and diminished quality of life\(^1\)

- Until recently, the only classes of medication specifically proven to slow progression of CKD were ACE inhibitors or ARBs

- Sodium glucose cotransporter 2 (SGLT2) inhibitors, including dapagliflozin, have shown favorable effects on CV and kidney outcomes in large clinical trials in patients with type 2 diabetes\(^2\)\(^-\)\(^5\)

- The DAPA-HF trial showed that dapagliflozin reduced the risk of worsening heart failure or death from CV causes, independently of the presence of diabetes\(^6\)

- We hypothesized that dapagliflozin could also preserve kidney function and improve outcomes in people with chronic kidney disease, independently of the presence of diabetes

Objectives

- To assess whether treatment with dapagliflozin, compared with placebo, reduced the risk of renal and CV events in people with CKD with or without type 2 diabetes, and who are receiving standard of care including a maximum tolerated dose of an ACE inhibitor or ARB

• **Primary outcome**
 - Composite outcome of sustained ≥50% eGFR decline, ESKD, renal or CV death

• **Secondary outcomes (in hierarchical order)**
 - Composite outcome of sustained ≥50% eGFR decline, ESKD or renal death
 - CV death or hospitalizations for heart failure
 - All-cause mortality

Study Design

Key inclusion criteria:
• ≥18 years of age
• eGFR 25 to 75 mL/min/1.73m²
• UACR 200 to 5000 mg/g (22.6 to 565 mg/mmol)
• Stable maximum tolerated labelled dose of ACEi or ARB for ≥4 weeks (if not contraindicated)

Key exclusion criteria:
• Type 1 diabetes
• Polycystic kidney disease, lupus nephritis, ANCA-associated vasculitis
• Immunosuppressive therapy within 6 months prior to enrollment

Matching Placebo once daily

Screening

Randomization (1:1)

−2 W
Day 0
2 W
2 M
4 M
8 M

Visits every 4 months

Dapagliflozin 10 mg once daily

Study End Date
Study Closure Visit

Within 6 weeks

Outcome analysis based on Cox proportional hazard model stratified by type 2 diabetes and UACR and adjusted for eGFR

ANCA, anti-neutrophil cytoplasmic antibody; ITT, intention-to-treat; UACR, urinary albumin-to-creatinine ratio.

DAPA-CKD: 21 countries, 386 sites, 4304 participants

North America:
Canada (n=280)
United States (n=533)

Latin America:
Argentina (n=235)
Brazil (n=302)
Mexico (n=154)
Peru (n=221)

Western Europe:
Denmark (n=45)
Germany (n=138)
Spain (n=260)
Sweden (n=40)
UK (n=60)

Eastern Europe:
Hungary (n=140)
Poland (n=103)
Russia (n=255)
Ukraine (n=192)

Asia:
China (n=210)
India (n=201)
Japan (n=244)
Philippines (n=115)
South Korea (n=294)
Vietnam (n=282)
After a regular review meeting, the Independent DMC recommended on 26 March that the trial be stopped due to overwhelming efficacy, based on 408 primary endpoint events (60% of planned events).
Patient disposition

7517 participants enrolled

4304 participants randomized to treatment

3213 participants not randomized

Dapagliflozin 10 mg
N=2152

- 3 participants did not receive study drug
- 274 participants discontinued study drug
- 2142 (99.5%) participants completed the study
- 10 participants discontinued study

Placebo
N=2152

- 3 participants did not receive study drug
- 309 participants discontinued study drug
- 2147 (99.8%) participants completed the study
- 5 participants discontinued study

4299 (99.9%) vital status known; 4289 (99.7%) completed study

Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>Dapagliflozin (N=2152)</th>
<th>Placebo (N=2152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, mean</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>Sex, female, %</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Race, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>52</td>
<td>54</td>
</tr>
<tr>
<td>Black or African-American</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Asian</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Type 2 diabetes, %</td>
<td>68</td>
<td>67</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg, mean</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>eGFR, mL/min/1.73m², mean</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>UACR, mg/g, median</td>
<td>965</td>
<td>934</td>
</tr>
<tr>
<td>ACEi or ARB, %</td>
<td>97</td>
<td>97</td>
</tr>
</tbody>
</table>

Primary outcome:
Sustained ≥50% eGFR decline, ESKD, renal or CV death

Hazard ratio, 0.61 (95% CI, 0.51–0.72)
p=0.000000028
NNT=19

Secondary outcome:
Sustained ≥50% eGFR decline, ESKD, renal death

Hazard ratio, 0.56 (95% CI, 0.45–0.68)
p=0.000000018

243 Events
Placebo

142 Events
Dapagliflozin

No. at Risk
Dapagliflozin 2152 2001 1955 1898 1841 1701 1288 831 309
Placebo 2152 1993 1936 1858 1791 1664 1232 774 270
Chronic dialysis, kidney transplantation, renal death

Hazard ratio, 0.66 (95% CI, 0.49–0.90) p=0.0072

- Placebo: 103 Events
- Dapagliflozin: 71 Events

No. at Risk
Summary of the primary outcome and its components

<table>
<thead>
<tr>
<th>Event</th>
<th>Dapagliflozin events</th>
<th>Placebo events</th>
<th>Hazard Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary composite endpoint</td>
<td>197</td>
<td>312</td>
<td>0.61 (0.51, 0.72)</td>
<td>0.000000028</td>
</tr>
<tr>
<td>≥50% eGFR decline</td>
<td>112</td>
<td>201</td>
<td>0.53 (0.42, 0.67)</td>
<td><0.0001</td>
</tr>
<tr>
<td>ESKD</td>
<td>109</td>
<td>161</td>
<td>0.64 (0.50, 0.82)</td>
<td>0.0004</td>
</tr>
<tr>
<td>eGFR <15 mL/min/1.73m²</td>
<td>84</td>
<td>120</td>
<td>0.67 (0.51, 0.88)</td>
<td>0.0045</td>
</tr>
<tr>
<td>Chronic dialysis</td>
<td>68</td>
<td>99</td>
<td>0.66 (0.48, 0.90)</td>
<td>0.0080</td>
</tr>
<tr>
<td>Transplantation</td>
<td>3</td>
<td>8</td>
<td>0.81 (0.58, 1.12)</td>
<td>0.2029</td>
</tr>
<tr>
<td>Renal death</td>
<td>2</td>
<td>6</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>CV death</td>
<td>65</td>
<td>80</td>
<td>NC</td>
<td></td>
</tr>
</tbody>
</table>

NC, not calculable
Primary outcome – pre-specified subgroup analysis

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Dapagliflozin events</th>
<th>Placebo events</th>
<th>Hazard Ratio (95% CI)</th>
<th>p-value interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>197</td>
<td>312</td>
<td>0.61 (0.51, 0.72)</td>
<td>0.24</td>
</tr>
<tr>
<td>With type 2 diabetes</td>
<td>152</td>
<td>229</td>
<td>0.64 (0.52, 0.79)</td>
<td></td>
</tr>
<tr>
<td>Without type 2 diabetes</td>
<td>45</td>
<td>83</td>
<td>0.50 (0.35, 0.72)</td>
<td>0.24</td>
</tr>
<tr>
<td>UACR ≤1000 mg/g</td>
<td>44</td>
<td>84</td>
<td>0.54 (0.37, 0.77)</td>
<td></td>
</tr>
<tr>
<td>UACR >1000 mg/g</td>
<td>153</td>
<td>228</td>
<td>0.62 (0.50, 0.76)</td>
<td>0.52</td>
</tr>
<tr>
<td>eGFR <45 mL/min/1.73m²</td>
<td>152</td>
<td>217</td>
<td>0.63 (0.51, 0.78)</td>
<td></td>
</tr>
<tr>
<td>eGFR ≥45 mL/min/1.73m²</td>
<td>45</td>
<td>95</td>
<td>0.49 (0.34, 0.69)</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Primary outcome – pre-specified subgroup analysis

<table>
<thead>
<tr>
<th></th>
<th>Dapagliflozin events</th>
<th>Placebo events</th>
<th>Hazard ratio (95% CI)</th>
<th>p-value interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>197</td>
<td>312</td>
<td>0.61 (0.51, 0.72)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤65 years</td>
<td>122</td>
<td>191</td>
<td>0.64 (0.51, 0.80)</td>
<td>0.53</td>
</tr>
<tr>
<td>>65 years</td>
<td>75</td>
<td>121</td>
<td>0.58 (0.43, 0.77)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>126</td>
<td>209</td>
<td>0.57 (0.46, 0.72)</td>
<td>0.50</td>
</tr>
<tr>
<td>Female</td>
<td>71</td>
<td>103</td>
<td>0.65 (0.48, 0.88)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>110</td>
<td>174</td>
<td>0.62 (0.49, 0.79)</td>
<td>0.68</td>
</tr>
<tr>
<td>Black</td>
<td>7</td>
<td>14</td>
<td>0.33 (0.13, 0.81)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>53</td>
<td>77</td>
<td>0.66 (0.46, 0.93)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>27</td>
<td>47</td>
<td>0.54 (0.33, 0.86)</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>50</td>
<td>69</td>
<td>0.70 (0.48, 1.00)</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>57</td>
<td>89</td>
<td>0.60 (0.43, 0.85)</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>35</td>
<td>69</td>
<td>0.51 (0.34, 0.76)</td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>55</td>
<td>85</td>
<td>0.61 (0.43, 0.86)</td>
<td>0.77</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With type 2 diabetes</td>
<td>152</td>
<td>229</td>
<td>0.64 (0.52, 0.79)</td>
<td>0.24</td>
</tr>
<tr>
<td>Without type 2 diabetes</td>
<td>45</td>
<td>83</td>
<td>0.50 (0.35, 0.72)</td>
<td></td>
</tr>
<tr>
<td>eGFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><45 mL/min/1.73m²</td>
<td>152</td>
<td>217</td>
<td>0.63 (0.51, 0.78)</td>
<td>0.22</td>
</tr>
<tr>
<td>≥45 mL/min/1.73m²</td>
<td>45</td>
<td>95</td>
<td>0.49 (0.34, 0.69)</td>
<td></td>
</tr>
<tr>
<td>UACR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1000 mg/g</td>
<td>44</td>
<td>84</td>
<td>0.54 (0.37, 0.77)</td>
<td>0.52</td>
</tr>
<tr>
<td>>1000 mg/g</td>
<td>153</td>
<td>228</td>
<td>0.62 (0.50, 0.76)</td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤130 mmHg</td>
<td>46</td>
<td>96</td>
<td>0.44 (0.31, 0.63)</td>
<td>0.04</td>
</tr>
<tr>
<td>>130 mmHg</td>
<td>151</td>
<td>216</td>
<td>0.68 (0.56, 0.84)</td>
<td></td>
</tr>
</tbody>
</table>

Secondary outcome: CV death or heart failure hospitalization

Hazard ratio, 0.71 (95% CI, 0.55–0.92)
p=0.0089

138 Events
100 Events

Placebo
Dapagliflozin

<table>
<thead>
<tr>
<th>Months since Randomization</th>
<th>Hazard ratio, 0.71 (95% CI, 0.55–0.92)</th>
<th>p=0.0089</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>10.0</td>
<td></td>
</tr>
</tbody>
</table>

No. at Risk

Dapagliflozin
Placebo

<table>
<thead>
<tr>
<th>Months since Randomization</th>
<th>No. at Risk (Dapagliflozin)</th>
<th>No. at Risk (Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2152</td>
<td>2152</td>
</tr>
<tr>
<td>4</td>
<td>2035</td>
<td>2035</td>
</tr>
<tr>
<td>8</td>
<td>2021</td>
<td>2021</td>
</tr>
<tr>
<td>12</td>
<td>2003</td>
<td>2003</td>
</tr>
<tr>
<td>16</td>
<td>1975</td>
<td>1975</td>
</tr>
<tr>
<td>20</td>
<td>1927</td>
<td>1927</td>
</tr>
<tr>
<td>24</td>
<td>1895</td>
<td>1895</td>
</tr>
<tr>
<td>28</td>
<td>1853</td>
<td>1853</td>
</tr>
<tr>
<td>32</td>
<td>1502</td>
<td>1502</td>
</tr>
<tr>
<td>36</td>
<td>1003</td>
<td>1003</td>
</tr>
<tr>
<td>40</td>
<td>976</td>
<td>976</td>
</tr>
<tr>
<td>44</td>
<td>360</td>
<td>360</td>
</tr>
</tbody>
</table>

Secondary outcome: All-cause mortality

Hazard ratio, 0.69 (95% CI, 0.53–0.88)
P=0.0035

Safety

<table>
<thead>
<tr>
<th>Safety outcomes*, n (%)</th>
<th>Dapagliflozin (N=2149)</th>
<th>Placebo (N=2149)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discontinuation of study drug</td>
<td>274 (12.8)</td>
<td>309 (14.4)</td>
</tr>
<tr>
<td>Discontinuation due to adverse event</td>
<td>118 (5.5)</td>
<td>123 (5.7)</td>
</tr>
<tr>
<td>Any serious adverse event</td>
<td>633 (29.5)</td>
<td>729 (33.9)</td>
</tr>
<tr>
<td>Adverse events of interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amputation†</td>
<td>35 (1.6)</td>
<td>39 (1.8)</td>
</tr>
<tr>
<td>Any definite or probable diabetic ketoacidosis</td>
<td>0</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>Fracture‡</td>
<td>85 (4.0)</td>
<td>69 (3.2)</td>
</tr>
<tr>
<td>Renal related adverse event‡</td>
<td>155 (7.2)</td>
<td>188 (8.7)</td>
</tr>
<tr>
<td>Major hypoglycaemia§</td>
<td>14 (0.7)</td>
<td>28 (1.3)</td>
</tr>
<tr>
<td>Volume depletion‡</td>
<td>127 (5.9)</td>
<td>90 (4.2)</td>
</tr>
<tr>
<td>Serious adverse events of volume depletion</td>
<td>22 (1.0)</td>
<td>18 (0.8)</td>
</tr>
</tbody>
</table>

*Safety outcomes reported in participants on and off treatment; †surgical or spontaneous/non-surgical amputation, excluding amputation due to trauma; ‡based on pre-defined list of preferred terms; §AE with the following criteria confirmed by the investigator: i) symptoms of severe impairment in consciousness or behaviour, ii) need of external assistance, iii) intervention to treat hypoglycaemia, iv) prompt recovery of acute symptoms following the intervention

Conclusion

- In patients with CKD, with and without type 2 diabetes, dapagliflozin compared to placebo:
 - Reduced the risk of kidney failure
 - Reduced the risk of death from CV causes or hospitalization for heart failure
 - Prolonged survival

- Dapagliflozin was well tolerated, in keeping with its established safety profile
Thank You

The DAPA-CKD team would like to thank the following:

Members of the DAPA-CKD Executive Committee
Hiddo J.L. Heerspink, David C. Wheeler, Glenn Chertow, Ricardo Correa-Rotter, Tom Greene, Fan Fan Hou, John McMurray, Peter Rossing, Robert Toto, Bergur Stefansson, and Anna Maria Langkilde

Members of the DAPA-CKD Independent Data Monitoring Committee
Marc A. Pfeffer, Stuart Pocock, Karl Swedberg, Jean L. Rouleau, Nishi Chaturvedi, Peter Ivanovich, Andrew S. Levey, and Heidi Christ-Schmidt

Members of the DAPA-CKD Event Adjudication Committee
Claes Held, Christina ChristerSSson, Johannes Mann, and Christoph Varenhorst

The DAPA-CKD team would also like to thank all participating investigators, the patients and their families!
Q&A
Use of AstraZeneca conference call, webcast and presentation slides

The AstraZeneca webcast, conference call and presentation slides (together the ‘AstraZeneca Materials’) are for your personal, non-commercial use only. You may not copy, reproduce, republish, post, broadcast, transmit, make available to the public, sell or otherwise reuse or commercialise the AstraZeneca Materials in any way. You may not edit, alter, adapt or add to the AstraZeneca Materials in any way, nor combine the AstraZeneca Materials with any other material. You may not download or use the AstraZeneca Materials for the purpose of promoting, advertising, endorsing or implying any connection between you (or any third party) and us, our agents or employees, or any contributors to the AstraZeneca Materials. You may not use the AstraZeneca Materials in any way that could bring our name or that of any Affiliate into disrepute or otherwise cause any loss or damage to us or any Affiliate. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA. Telephone + 44 20 3749 5000, www.astrazeneca.com