We prioritise implementing water efficiency projects and water efficiency audits in water scarce areas. This map shows the water scarcity rating for AstraZeneca sites that use over 10,000m³ of water per year.

In 2020, AstraZeneca transitioned to using WWF’s Water Risk Filter to complete regular site water risk assessments, which resulted in an update to the ratings.

Sites

1. 6th of October City, Egypt
2. Yelahanka Bangalore, India
3. Coppell, United States
4. Shanghai Zhangjiang, China
5. Boston, United States
6. Cambridge, United Kingdom
7. Canóvanas, Puerto Rico
8. Cotia-São Paulo, Brazil
9. Dunkirk, France
10. Frederick, United States
11. Gaithersburg, United States
12. Gothenburg, Sweden
13. Liverpool, United Kingdom
14. Louisville, United States
15. Macclesfield, United Kingdom
16. Maihara, Japan
17. Mount Vernon, United States
18. Newark, United States
19. Nijmegen, Netherlands
20. North Ryde, Australia
21. Philadelphia, United States
22. Södertälje, Sweden
23. Taizhou, China
24. Vorsino, Russia
25. West Chester, United States
26. Wilmington, United States
27. Wuxi, China

Purifying water

Purified water generators were optimised to reduce the volume of water rejected from the units when preparing for manufacturing. Optimisations reduced reject flow volumes by 30% without any impact on the quality of purified water. These changes are expected to reduce the site’s water footprint by 20% or 34,000m³ a year. This represents a saving of $50,000 in costs annually.

Optimising steam condensate

Upgraded chiller condenser pumps and the installation of metering will help optimise our steam condensate water consumption. These changes are expected to reduce the site’s water footprint by 3% or 2,250m³ a year.

Improving operational water efficiency

Our NRRGG capital fund invested in a project to reuse water from our purified water and steam generator. The water purification process results in two distinct water types — purified water to be used in our manufacturing processes, and a stream which is rejected. Our team at Taizhou identified that although the rejected water had too many impurities to be used in our manufacturing processes, it could be reused elsewhere on the site. After installing equipment to collect and filter rejected water, it can now be reused in cooling towers. This has resulted in reducing the site’s water footprint by 13% or 12,000m³ a year.