Meet AZN management: ASCO 2019
Breakout 3: early-stage pipeline

Susan Galbraith, Senior Vice President, Oncology R&D, early stage
Jean-Charles Soria, Senior Vice President, Oncology R&D, early stage

3 June 2019
Forward-looking statements

In order, among other things, to utilise the ‘safe harbour’ provisions of the US Private Securities Litigation Reform Act 1995, we are providing the following cautionary statement: this document contains certain forward-looking statements with respect to the operations, performance and financial condition of the Group, including, among other things, statements about expected revenues, margins, earnings per share or other financial or other measures. Although we believe our expectations are based on reasonable assumptions, any forward-looking statements, by their very nature, involve risks and uncertainties and may be influenced by factors that could cause actual outcomes and results to be materially different from those predicted. The forward-looking statements reflect knowledge and information available at the date of preparation of this document and AstraZeneca undertakes no obligation to update these forward-looking statements. We identify the forward-looking statements by using the words ‘anticipates’, ‘believes’, ‘expects’, ‘intends’ and similar expressions in such statements. Important factors that could cause actual results to differ materially from those contained in forward-looking statements, certain of which are beyond our control, include, among other things: the loss or expiration of, or limitations to, patents, marketing exclusivity or trademarks, or the risk of failure to obtain and enforce patent protection; effects of patent litigation in respect of IP rights; the impact of any delays in the manufacturing, distribution and sale of any of our products; the impact of any failure by third parties to supply materials or services; the risk of failure of outsourcing; the risks associated with manufacturing biologics; the risk that R&D will not yield new products that achieve commercial success; the risk of delay to new product launches; the risk that new products do not perform as we expect; the risk that strategic alliances and acquisitions, including licensing and collaborations, will be unsuccessful; the risks from pressures resulting from generic competition; the impact of competition, price controls and price reductions; the risks associated with developing our business in emerging markets; the risk of illegal trade in our products; the difficulties of obtaining and maintaining regulatory approvals for products; the risk that regulatory approval processes for biosimilars could have an adverse effect on future commercial prospects; the risk of failure to successfully implement cost reduction measures through productivity initiatives and restructuring programmes; the risk of failure of critical processes affecting business continuity; economic, regulatory and political pressures to limit or reduce the cost of our products; failure to achieve strategic priorities or to meet targets or expectations; the risk of substantial adverse litigation/government investigation claims and insufficient insurance coverage; the risk of substantial product liability claims; the risk of failure to adhere to applicable laws, rules and regulations; the risk of failure to adhere to applicable laws, rules and regulations relating to anti-competitive behaviour; the impact of increasing implementation and enforcement of more stringent anti-bribery and anti-corruption legislation; taxation risks; exchange rate fluctuations; the risk of an adverse impact of a sustained economic downturn; political and socio-economic conditions; the risk of environmental liabilities; the risk of occupational health and safety liabilities; the risk associated with pensions liabilities; the impact of failing to attract and retain key personnel and to successfully engage with our employees; the risk of misuse of social medial platforms and new technology; and the risk of failure of information technology and cybercrime. Nothing in this presentation / webcast should be construed as a profit forecast.
Rich early to mid-stage pipeline

Tumour drivers and resistance

- **capivasertib** (AKT\(^1\) inhibitor)
 - breast, prostate cancers, Phase III to start
- **AZD9833** (SERD\(^2\), oral)
 - breast cancer, Phase I
- **AZD5991** (MCL1\(^3\) inhibitor)
 - haematologic cancers, Phase I
- **savolitinib** (cMET\(^4\))
 - NSCLC, Phase II

DNA damage response (DDR)

- **adavosertib** (WEE1\(^5\) inhibitor)
 - solid cancers, Phase II
- **ceralasertib** (ATR\(^6\) inhibitor)
 - solid cancers, Phase II
- **AZD2811** (aurora kinase B inhibitor)
 - solid cancers, Phase II
- **AZD1390** (ATM\(^7\) inhibitor)
 - solid cancers, Phase I
- **AZD7468** (DNA-PK\(^8\))
 - solid cancers

Immuno-oncology (IO)

- **monalizumab** (NKG2A\(^9\) mAb\(^{10}\))
 - head & neck, colorectal, Phase II ongoing
- **MEDI5752** (PD-1/CTLA-4 bispecific mAb)
 - solid cancers, Phase I
- **olecumab** (CD73\(^{11}\) mAb)
 - lung, pancreatic cancers, Phase I/II
- **AZD4635** (A2aR\(^{12}\) inhibitor)
 - solid cancers, Phase II
- **AZD9150** (STAT3\(^{13}\) inhibitor)
 - solid cancers, Phase II
- **AZD2811** (aurora kinase B inhibitor)
 - solid cancers
- **AZD7468** (DNA-PK\(^8\))
 - solid cancers

Tumour drivers and resistance: early breast
Building on an established franchise

Capivasertib (AZD5363): targeting AKT

AZD9833 (SERD, oral)

Early evidence of enhanced benefit with capivasertib + paclitaxel in altered metastatic TNBC

ASCO 2019 data on Tuesday 4 June 2019, abstract #1005:
- OS HR 0.57 in the ITT population

Phase III to initiate

Phase I ongoing
Phase II in planning

1. Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 2. Phosphatase and tensin homolog.

Source: ASCO 2018.
Tumour drivers and resistance: cell death
Haematologic cancers the next wave of innovation

Targeting distinct nodes of cell death

AZD5991 (MCL1)\(^1\): novel macrocyclic chemistry
AZD4573 (CDK9)\(^2\): distinct mechanism of targeting MCL1
AZD0466 (Bcl2\(^3\)/xL\(^4\)): nanomedicine to improve therapeutic margin

AZD5991 (MCL1 inhibitor)

Single dose of AZD5991 achieves tumour regression in haematological cancer preclinical models

AZD5991 in Phase I

1. Inhibitor.
2. Cyclin-dependent kinase 9.
DNA damage response: *Lynparza* and beyond

Developing chemo-free regimens, extending survival

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 - 2018</td>
<td>Establish Lynparza leadership as monotherapy</td>
</tr>
<tr>
<td></td>
<td>Launch Lynparza combinations (VEGF(^1), IO)</td>
</tr>
<tr>
<td></td>
<td>Expand Lynparza beyond BRCA (prostate cancer, ovarian cancer)</td>
</tr>
<tr>
<td>2019 - 2021</td>
<td>Launch adavosertib (WEE1) / ceralasertib (ATR) Lynparza combinations</td>
</tr>
<tr>
<td></td>
<td>Deliver next-generation DDR medicines:</td>
</tr>
<tr>
<td></td>
<td>AZD1390 (ATM inhibitor), AZD2811 (aurora kinase B inhibitor)</td>
</tr>
<tr>
<td></td>
<td>AZD7648 (DNA-PK)</td>
</tr>
<tr>
<td>2022 - 2025</td>
<td>Launch adavosertib (WEE1) / ceralasertib (ATR) Lynparza combinations</td>
</tr>
<tr>
<td></td>
<td>Launch adavosertib (WEE1) / ceralasertib (ATR) Lynparza combinations</td>
</tr>
</tbody>
</table>

1. Vascular endothelial growth factor.
DNA damage response: pipeline

The next wave of potential DDR medicines

A broad pipeline targeting complementary aspects of DNA damage repair and cell cycle regulation

AZD2811: targeting Aurora Kinase B

Monotherapy activity in SCLC\(^1\) model *in vivo*

Phase I ongoing
Phase II start in planning

1. Poly (ADP-ribose) polymerase.
Broad IO pipeline: enhancement of antitumour immunity

Fully harnessing immune system to eliminate tumours

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Example</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No effective antitumour immunity</td>
<td>'Cold' tumour</td>
<td>PD-L1/CD40L, IL-12 mRNA, NDV-GMCSF, HPV Vaccine</td>
</tr>
<tr>
<td>2</td>
<td>Suboptimal or exhausted antitumour immunity</td>
<td>Example: PD-L1+ tumour</td>
<td>PD-L1, CTLA-4, PD-1/CTLA-4, NKG2A</td>
</tr>
<tr>
<td>3</td>
<td>Antitumour immunity suppressed by TME</td>
<td>Example: CD73+ tumour</td>
<td>CD73, A2aR, CD39, STAT3</td>
</tr>
</tbody>
</table>

Goal: highly-active antitumour immunity

1. Tumour micro environment
2. Cluster of differentiation 40 ligand
3. Interleukin-12
4. Messenger RNA
5. Recombinant Newcastle disease virus
6. granulocyte-macrophage colony-stimulating factor
Developing an adenosine franchise
Reversing tumour immunosuppression

Targeting adenosine pathway

IMMUNE RESPONSE

Pro-inflammatory

Immunosuppressive

Cancer therapy

↑ Dendritic cell
↑ Macrophage
↓ Tregs

↑ MDSC\(^1\)
↑ Tregs\(^2\)
↑ Fibroblast
↑ Angiogenesis

T effectors
↓ NK\(^3\) cells
↓ Tregs
↑ Suppressive TAM\(^4\)
↑ Angiogenesis

Cell death

↑ Dendritic cell
↑ Macrophage
↓ Tregs

↑ MDSC\(^1\)
↑ Tregs\(^2\)
↑ Fibroblast
↑ Angiogenesis

T effectors
↓ NK\(^3\) cells
↓ Tregs
↑ Suppressive TAM\(^4\)
↑ Angiogenesis

Cancer therapy

P2X7

P2Y2

CD73

CD39

AMP\(^6\)

Adenosine triphosphate

Adenosine monophosphate

AZD4635: targeting A2aR

Phase I ongoing
Phase II in planning

Multiple projects aimed at full suppression

1. Myeloid-derived suppressor cells
2. Regulatory T cells
3. Natural killer cells
4. Tumour-associated macrophages
5. Adenosine triphosphate
6. Adenosine monophosphate

RCC: renal cell carcinoma.
H&N: head and neck cancer.
Next-generation checkpoints
Utilising the innate and adaptive immune system

Monalizumab: targeting NKG2A

MEDI5752: PD-1/CTLA-4 bispecific

Tumour: increased efficacy
Periphery: increased safety

Internalisation and degradation of PD-1 leads to complete and durable blockade of PD-1 and CTLA-4 in the TME
Mitigated toxicity due to reduced binding to CTLA-4+ peripheral T cells

Phase II ongoing
Phase III in planning

Phase I ongoing
Phase II in planning

Source: Cohen et al ESMO 2018.
Oncolytic viruses offer multiple mechanisms of action
Leveraging internal and external expertise

MEDI5395: NDV-GMCSF

- Not a select agent; suitable for world-wide development
- F-Protein Cleavage site modification
- Transgene insertion
- Incorporation of intergenic stretch sequence (198nt)
- MEDI5395 (ICPI <0.2)

Collaboration with Transgene

1. IFN\(^\gamma\) production, Th\(^2\)1 education
2. T cell memory and homeostasis
3. Activation of APC\(^3\)s
4. Immune priming and APC activation
5. Increase lysis & Type I IFN response

Collaboration of five oncolytic viruses

- Intracerebral pathogenicity index scale (ICPI): <0.4 is non-pathogenic

Use of AstraZeneca conference call, webcast and presentation slides

The AstraZeneca webcast, conference call and presentation slides (together the ‘AstraZeneca Materials’) are for your personal, non-commercial use only. You may not copy, reproduce, republish, post, broadcast, transmit, make available to the public, sell or otherwise reuse or commercialise the AstraZeneca Materials in any way. You may not edit, alter, adapt or add to the AstraZeneca Materials in any way, nor combine the AstraZeneca Materials with any other material. You may not download or use the AstraZeneca Materials for the purpose of promoting, advertising, endorsing or implying any connection between you (or any third party) and us, our agents or employees, or any contributors to the AstraZeneca Materials. You may not use the AstraZeneca Materials in any way that could bring our name or that of any Affiliate into disrepute or otherwise cause any loss or damage to us or any Affiliate. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA. Telephone + 44 20 3749 5000, www.astrazeneca.com