MedImmune R&D Roadshow

November 7, 2013
Gaithersburg, Maryland
Cautionary Statement Regarding Forward-Looking Statements

In order, among other things, to utilise the 'safe harbour' provisions of the US Private Securities Litigation Reform Act 1995, we are providing the following cautionary statement: This presentation contains certain forward-looking statements with respect to the operations, performance and financial condition of the Group. Although we believe our expectations are based on reasonable assumptions, any forward-looking statements, by their very nature, involve risks and uncertainties and may be influenced by factors that could cause actual outcomes and results to be materially different from those predicted. The forward-looking statements reflect knowledge and information available at the date of preparation of this presentation and AstraZeneca undertakes no obligation to update these forward-looking statements. We identify the forward-looking statements by using the words 'anticipates', 'believes', 'expects', 'intends' and similar expressions in such statements. Important factors that could cause actual results to differ materially from those contained in forward-looking statements, certain of which are beyond our control, include, among other things: the loss or expiration of patents, marketing exclusivity or trade marks, or the risk of failure to obtain patent protection; the risk of substantial adverse litigation/government investigation claims and insufficient insurance coverage; exchange rate fluctuations; the risk that R&D will not yield new products that achieve commercial success; the risk that strategic alliances and acquisitions will be unsuccessful; the impact of competition, price controls and price reductions; taxation risks; the risk of substantial product liability claims; the impact of any delay in the manufacturing, distribution and sale of any of our products; the impact of any failure by third parties to supply materials or services; the risk of failure to manage a crisis; the risk of delay to new product launches; the difficulties of obtaining and maintaining regulatory approvals for products; the risk of failure to observe ongoing regulatory oversight; the risk that new products do not perform as we expect; the risk of environmental liabilities; the risks associated with conducting business in emerging markets; the risk of reputational damage; the risk of product counterfeiting; the risk of failure to successfully implement planned cost reduction measures through productivity initiatives and restructuring programmes; the risk that regulatory approval processes for biosimilars could have an adverse effect on future commercial prospects; the impact of failing to attract and retain key personnel and to successfully engage with our employees and the impact of increasing implementation and enforcement of more stringent anti-bribery and anti-corruption legislation. Nothing in this presentation should be construed as a profit forecast.
Agenda

Presentations:
Dr. Bahija Jallal, Executive Vice President, AstraZeneca
Head of MedImmune
Dr. Bing Yao, Head of Respiratory, Inflammation & Autoimmune iMed
Dr. Ed Bradley, Head of MedImmune Oncology iMed

Q&A

Reception
MedImmune, the global biologics R&D arm of AstraZeneca

Dr. Bahija Jallal
Executive Vice President, AstraZeneca
Head of MedImmune
Today’s Discussion

Enterprise Strategy

MedImmune’s Roadmap
Our Strategic Priorities

1. Achieve scientific leadership
2. Return to growth
3. Be a great place to work
Achieve Scientific Leadership

1. Achieve scientific leadership

 - **FOCUS** on distinctive science in 3 core TAs
 - **PRIORITISE & ACCELERATE** our pipeline
 - **TRANSFORM** our innovation culture & model
Our core focus

FOCUS on distinctive science in 3 core TAs

- **Cardio-Metabolism**
- **Respiratory/inflammation**
- **Oncology**

- **Infection & Vaccines**
- **Neuroscience**

Core TAs

Biologics

Small Molecules

Immuno-therapies

Protein engineering
MedImmune Pipeline

Growing late-stage pipeline

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>- 25 NMEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small molecule</td>
<td>Biologics</td>
</tr>
<tr>
<td>AZD5363*</td>
<td>MEDI0639*</td>
</tr>
<tr>
<td>AKT solid tumours</td>
<td>DLL-4 solid tumours</td>
</tr>
<tr>
<td>AZD2014</td>
<td>MEDI-565*</td>
</tr>
<tr>
<td>TORK solid tumours</td>
<td>CEA BITE GI</td>
</tr>
<tr>
<td>volitinib*</td>
<td>MEDI6469*</td>
</tr>
<tr>
<td>MET solid tumours</td>
<td>mOx40 solid tumours</td>
</tr>
<tr>
<td>AZD1208</td>
<td>MEDI4736*</td>
</tr>
<tr>
<td>PIM haems</td>
<td>PD-L1 solid tumours</td>
</tr>
<tr>
<td>AZD8186</td>
<td>MEDI3617*</td>
</tr>
<tr>
<td>PI3 solid tumours</td>
<td>ANG-2 solid tumours</td>
</tr>
<tr>
<td>AZD9150*</td>
<td>MEDI9929*</td>
</tr>
<tr>
<td>STAT3 haems</td>
<td>TSLP asthma</td>
</tr>
<tr>
<td>AZD9291</td>
<td>MEDI5872*</td>
</tr>
<tr>
<td>EGFRm+ solid tumours</td>
<td>B7RP1 SLE</td>
</tr>
<tr>
<td>AZD8848*</td>
<td>MEDI551*</td>
</tr>
<tr>
<td>TLR7 asthma</td>
<td>CD19 MS</td>
</tr>
<tr>
<td>AZD7594*</td>
<td>MED1012</td>
</tr>
<tr>
<td>SGRM COPD</td>
<td>LCAT, ACS</td>
</tr>
<tr>
<td>AZD7624</td>
<td>MEDI4893</td>
</tr>
<tr>
<td>ip38I COPD</td>
<td>staph alpha toxin SSI</td>
</tr>
<tr>
<td>RDEA3170</td>
<td>MEDI559</td>
</tr>
<tr>
<td>URAT1 gout</td>
<td>PRVV</td>
</tr>
<tr>
<td>AZD3293*</td>
<td>MED1550</td>
</tr>
<tr>
<td>BSECDR Alzheimer’s</td>
<td>Panflu library</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 2</th>
<th>- 23 NMEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small molecule</td>
<td>Biologics</td>
</tr>
<tr>
<td>selumetinib*</td>
<td>MEDI-551*</td>
</tr>
<tr>
<td>MEK solid tumours</td>
<td>CD19 CLL, DLBCL</td>
</tr>
<tr>
<td>AZD4547</td>
<td>MEDI-573*</td>
</tr>
<tr>
<td>FGFR solid tumours</td>
<td>IGF MBC</td>
</tr>
<tr>
<td>olaparib</td>
<td>AZD5215*</td>
</tr>
<tr>
<td>PARP-BRCA solid tumours</td>
<td>MABA COPD</td>
</tr>
<tr>
<td>AZD5423*</td>
<td>MEDI5069</td>
</tr>
<tr>
<td>iSGRM COPD</td>
<td>CXCR2 asthma</td>
</tr>
<tr>
<td>AZD5069</td>
<td>AZD2115*</td>
</tr>
<tr>
<td>CXCR2 asthma</td>
<td>MABA COPD</td>
</tr>
<tr>
<td>AZD1722*</td>
<td>AZD1523</td>
</tr>
<tr>
<td>NHE3 ESRD/CKD</td>
<td>H3R neuropathic pain</td>
</tr>
<tr>
<td>AZD1722*</td>
<td>MEDI6756</td>
</tr>
<tr>
<td>NHE3 ESRD/CKD</td>
<td>NMDA MDD</td>
</tr>
<tr>
<td>AZD1722*</td>
<td>MEDI546*</td>
</tr>
<tr>
<td>NHE3 ESRD/CKD</td>
<td>IFNa SLE</td>
</tr>
<tr>
<td>AZD1722*</td>
<td>MEDI5213</td>
</tr>
<tr>
<td>NHE3 ESRD/CKD</td>
<td>H3R neuropathic pain</td>
</tr>
<tr>
<td>AZD1523</td>
<td>MEDI7183*</td>
</tr>
<tr>
<td>H3R neuropathic pain</td>
<td>4β7 UC, Crohn’s</td>
</tr>
<tr>
<td>AZD3241</td>
<td>MEDI8547</td>
</tr>
<tr>
<td>MPO Parkinson’s Disease</td>
<td>oxazolidinone TB</td>
</tr>
<tr>
<td>AZD5427</td>
<td>CXL*</td>
</tr>
<tr>
<td>oxazolidinone TB</td>
<td>BLI/cephalosporin MRSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 3</th>
<th>- 8 NMEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small molecule</td>
<td>Biologics</td>
</tr>
<tr>
<td>lesinurad</td>
<td>moxetumomab*</td>
</tr>
<tr>
<td>URAT1 gout</td>
<td>CD22, HCL</td>
</tr>
<tr>
<td>PT003</td>
<td>brodalumab*</td>
</tr>
<tr>
<td>LABA/LAMA COPD</td>
<td>IL-17R psoriasis</td>
</tr>
<tr>
<td>mOx40 solid tumours</td>
<td>Epanova*</td>
</tr>
<tr>
<td>selumetinib*</td>
<td>metreleptin*</td>
</tr>
<tr>
<td>MEK solid tumours</td>
<td>hypertriglyceridaemia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Mkt Reg</th>
<th>- 5 NMEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small molecule</td>
<td>Biologics</td>
</tr>
<tr>
<td>Caprelsa</td>
<td>Q-LAIV Flu</td>
</tr>
<tr>
<td>EGFR inhibitor MTC</td>
<td>Intrasal influenza virus</td>
</tr>
<tr>
<td>Brilinta</td>
<td>Brilinta</td>
</tr>
<tr>
<td>ADP receptor antagonist</td>
<td>ADP receptor antagonist</td>
</tr>
<tr>
<td>Forxiga*</td>
<td>Forxiga*</td>
</tr>
<tr>
<td>SGLT2 inhibitor</td>
<td>SGLT2 inhibitor</td>
</tr>
<tr>
<td>Zinforo*</td>
<td>Zinforo*</td>
</tr>
<tr>
<td>skin infections</td>
<td>skin infections</td>
</tr>
</tbody>
</table>

* Partnered Product

MedImmune comprises ~50% of the AZ pipeline

Oncology | RIA | CVMD | Neuroscience | Infection | Progressed | New BD

As of 30 June 2013
Bringing It Together

“Biotech Organizations”
Research To POC

“Innovative Medicines
Small Molecules

Combination Projects
Scientific Collaboration

MedImmune
Biologics

“Large Pharma”
Late Stage Development

Global Medicines Development
Small Molecules & Biologics

TRANSFORM our innovation culture & model
Co-locate around three strategic sites

Gaithersburg
Co-locate around biologics/specialty care

Cambridge
Co-locate R&D in world-class science cluster

Mölndal
Leverage historical strength Respiratory and CV/Met

Proximity to NIH, Johns Hopkins, FDA

New site in Cambridge with close proximity to University of Cambridge and world class UK bioscience community

Connections to Karolinska Institute & Medicon Valley
Today’s Discussion

Enterprise Strategy

MedImmune’s Roadmap
Building on a deep heritage of innovation
During the past 25 years, MedImmune has played a role in the following...

<table>
<thead>
<tr>
<th>Product</th>
<th>Year</th>
<th>Product</th>
<th>Year</th>
<th>Product</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV</td>
<td>1996</td>
<td>Inflammatory Diseases</td>
<td>2002</td>
<td>HPV Vaccine</td>
<td>2009</td>
</tr>
<tr>
<td>RespiGam</td>
<td>1998</td>
<td>Flu Vaccine</td>
<td>2003</td>
<td>SLE</td>
<td>2011</td>
</tr>
<tr>
<td>CMV</td>
<td>1998</td>
<td>Flu Vaccine</td>
<td>2003</td>
<td>Benlysta</td>
<td>2011</td>
</tr>
<tr>
<td>CYTOGAM</td>
<td>1998</td>
<td>HPV Vaccine</td>
<td>2006</td>
<td>Flu Vaccine</td>
<td>2012</td>
</tr>
<tr>
<td>SYNaGis</td>
<td>1998</td>
<td>Gardasil</td>
<td>2006</td>
<td>FluMist Quadrivalent</td>
<td>2012</td>
</tr>
</tbody>
</table>

AstraZeneca
Distinctive MedImmune strength in immunology is a foundation across TAs

<table>
<thead>
<tr>
<th>CVMD</th>
<th>RIA</th>
<th>Oncology</th>
<th>ID / Vaccines</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 Diabetes</td>
<td>Respiratory & Autoimmune Disease</td>
<td>Immune Mediated Cancer Tx</td>
<td>Adjuvants & Chronic Infection</td>
<td>Neuro-Inflammatory Tx</td>
</tr>
</tbody>
</table>

Deep understanding of immunology biology
MedImmune Antibody Technologies

Competitive antibody design and protein engineering toolkit lets us tackle multiple targets

- mAb (+YTE)
- Ab-drug conjugate
- Single-chain immunotoxin
- Bispecific Ab
- Internalized Ab
- Agonist/antagonist mAb
- Release of cytotoxic drug
- Ab mimicetic
- Blocks protein synthesis
- Induction of T Cell Killing
- ADCC
- BiTE
- Antibody*

Target cell
Personalized healthcare and diagnostics

80% of our pipeline has a personalized healthcare approach

Meaningful questions being asked by our Personalized Healthcare colleagues:

• What is the right indication to pursue in the clinic?
• What are the patient populations most likely to respond?
• What is the PD biomarker needed to follow target engagement?
• What are the biomarkers for proof of mechanism?
• What are biomarkers of efficacy?
• Do we need a companion diagnostic?
Characteristics of biologics seem to lead to greater likelihood of success

NME Success By Molecule Size
2007–2011 Industry Portrait

- Small:
 - Preclinical: 9.9
 - Phase 1: 77%
 - Phase 2: 42%
 - Phase 3: 20%
 - Registration: 59%
 - NME Entries To Achieve 1 Approval: 10.3

- Large:
 - Preclinical: 24.7
 - Phase 1: 57%
 - Phase 2: 44%
 - Phase 3: 63%
 - Registration: 84%
 - NME Entries To Achieve 1 Approval: 9.9

- Percent Calculated To Achieve 1 Approval:
 - Preclinical: 2%
 - Phase 1: 4%
 - Phase 2: 10%
 - Phase 3: 50%
 - Registration: 84%
<table>
<thead>
<tr>
<th>Discovery</th>
<th>Pre-Clinical Development</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Submission/Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oncology</td>
<td>Anti-DLL-4 MAb Solid Tumor</td>
<td>Moxetumomab Pasudotox Leukemia/Lymphoma</td>
<td>Anti-IGF Mab MBC</td>
<td>Moxetumomab Pasudotox Hairy Cell Leukemia</td>
<td>Q-LAIV Flu Vaccine</td>
</tr>
<tr>
<td>RIA</td>
<td>Anti-CEA BITE® Solid Tumor</td>
<td>Murine Anti-OX40 MAb DBCL</td>
<td>Anti-CD19 Mab CLL</td>
<td>Brodalumab Psoriasis</td>
<td></td>
</tr>
<tr>
<td>RIA</td>
<td>Anti-ANG2 MAb Solid Tumor</td>
<td>Anti-PD-L1 MAb Solid Tumor</td>
<td>Tremelimumab Asthma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIA</td>
<td>Anti-CD19 MAb MS</td>
<td>Anti-TSLP MAb Asthma</td>
<td>Benralizumab COPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIA</td>
<td>Anti-B7RP1 MAb Lupus</td>
<td>Anti-Alpha Toxin MAb Staph Alpha Toxin</td>
<td>Benralizumab COPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIA</td>
<td>Pediatric RSV Vaccine RSV</td>
<td>Pandemic Flu Vaccine Influenza</td>
<td>Anti-IL-1R Mab SLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV/MD</td>
<td>rhLCAT LCAT</td>
<td></td>
<td>Anti-IL-1R Mab Hidradenitis Suppurativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV/MD</td>
<td>Neuroscience</td>
<td></td>
<td>Anti-A4b7 MAb Crohn’s Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV/MD</td>
<td>Neuroscience</td>
<td></td>
<td>Brodalumab Psoriatic Arthritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV/MD</td>
<td>Neuroscience</td>
<td></td>
<td>Anti-A4b7 MAb Crohn’s Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV/MD</td>
<td>Neuroscience</td>
<td></td>
<td>Tralokinumab Asthma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV/MD</td>
<td>Neuroscience</td>
<td></td>
<td>Tralokinumab Ulcerative Colitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV/MD</td>
<td>Neuroscience</td>
<td></td>
<td>Anti-IL-23 MAb Crohn’s Disease</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As of August 1, 2013

MedImmune comprises ~50% of the AZ pipeline
Programs in Phase 3 in 2013

Benralizumab
IL-5R

Asthma
• Phase 3 started in October

Brodalumab
IL-17RA

Psoriasis (PsO)
• Phase 3 started Aug 2012
• Estimated biologics license application filing 2015

Moxetumomab
CD22

Hairy Cell Leukemia (HCL)
• Phase 3 started in May
• Estimated biologics license application filing 2017
MedImmune’s Roadmap

2013-2014

Immediate priorities

- Deliver mid-stage cohort of assets to Ph3
- Focus on immune-mediated therapies for cancer (IMT-C)
- Continue collaboration/business development (eg Spirogen, Amgen, WuXi AppTec, Amplimmune)

2015-2016

Mid-term goals

- Deliver next biologics license application
- Capture potential of regional science networks in Maryland, Cambridge and CA

2016+

Long-term aspiration

- Steady state delivery of important medicines to patients
- Sustainable research engine
Helping Patients with Respiratory, Inflammation & Autoimmune Diseases

Dr. Bing Yao, Senior Vice President and Head of RIA iMed, MedImmune
Vision is to be industry leader in innovative inhaled and targeted therapies for people with asthma, COPD, and IPF

Unique inhaled therapies

- Symbicort® (budesonide/formoterol fumarate dihydrate) Inhalation Aerosol
- Develop novel combinations
- Develop new devices and innovative product

Innovation-driven targeted therapies

- Understand patient phenotypes (clinical and molecular)
- Develop targeted therapies for complementary patient segments
- Evolve disease management from failure based approach to Dx driven PHC
Significant unmet needs and opportunity for growth in both asthma and COPD

Asthma

1 - $19 billion, growing 6.5%

<table>
<thead>
<tr>
<th>Number of active patients (G7 markets, M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma prevalence</td>
</tr>
<tr>
<td>Diagnosed patients</td>
</tr>
<tr>
<td>Treated patients</td>
</tr>
<tr>
<td>Uncontrolled patients</td>
</tr>
</tbody>
</table>

COPD

1 - $15 billion, growing 8.8%

<table>
<thead>
<tr>
<th>Number of active patients (G7 markets, M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD prevalence</td>
</tr>
<tr>
<td>Diagnosed patients</td>
</tr>
<tr>
<td>Treated patients</td>
</tr>
<tr>
<td>Uncontrolled patients</td>
</tr>
</tbody>
</table>

1 G7 markets only. Sources: Decision Resources 2012, GINA 2011, ATS Guidelines for Asthma, Adelphi Group 2009

2 G7 markets only. Sources: Decision Resources 2012, GOLD guideline, Adelphi Group 2009
Unmet need and shared biology presents a significant opportunity in autoimmune diseases

Explore shared biology and pathway

Cytokines
e.g., IFNa, IL17, IL23

T-Cell Co-stimulators
e.g., B7RP

Effector Macrophages
e.g., GM-CSF

T Regulatory cells

B-cell Autoantibodies
e.g., CD-19

Pursue potential therapeutic spanning multiple indications

Illustrative depiction of targets/pathways that can be common across diseases
A robust respiratory and autoimmune disease portfolio

Phase 1
- MEDI9929
 - TSLP Asthma
 - Dx
- MEDI5872
 - B7RP1, SLE
 - Dx
- MEDI-551
 - CD19, MS
 - Dx

Phase 2a
- Benralizumab
 - IL5R, COPD
 - Dx
- MEDI8968
 - IL1R, COPD
 - Dx
- Tralokinumab
 - IL13, IPF
 - Dx
- MEDI2070
 - IL23p19, Crohn's
 - Dx

Phase 2b
- Benralizumab
 - IL5R, COPD
 - Dx
- MEDI5872
 - B7RP1, SLE
 - Dx
- MEDI-551
 - CD19, MS
 - Dx
- MEDI8968
 - IL1R, HS
 - Dx
- MEDI7183
 - a4β7, Crohn's
 - Dx

Phase 3
- MEDI9929
 - TSLP Asthma
 - Dx
- MEDI5872
 - B7RP1, SLE
 - Dx
- MEDI-551
 - CD19, MS
 - Dx
- MEDI8968
 - IL1R, HS
 - Dx
- MEDI7183
 - a4β7, UC
 - Dx

* Amgen collaboration
Personalized healthcare approach: targeting different segments of the severe asthma

Asthma is a highly heterogeneous disease

- Developing understanding of underlying cause
- Studying patient subtypes
- Developing diagnostics
- Tailoring therapies
1) Benralizumab (MEDI-563): asthma (Ph3) targeted therapy for severe eosinophilic asthma

Mechanism of Action: anti-IL-5Rα

- Asthmatics with eosinophilia represent ~40-60% of severe asthmatics
- Eosinophil count associated with exacerbation
- Binding with high affinity to IL-5Rα depletes eosinophils
Benralizumab potently depletes eosinophils

Eosinophil depletion in periphery

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0003</td>
<td>5</td>
</tr>
<tr>
<td>0.003</td>
<td>6</td>
</tr>
<tr>
<td>0.03</td>
<td>6</td>
</tr>
<tr>
<td>0.1</td>
<td>6</td>
</tr>
<tr>
<td>0.3</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Blood EOS (x10^-3)

Eosinophil depletion in lung

Pre-Dose

Post-Dose

Note: Study conducted in 2 in mild atopic asthma

Busse et al, JACI 2010, ATS 2012 San Francisco, Abstract A3961
Phase 2a showed reduced exacerbations and hospitalizations in a high risk patient population

Decreased rate of exacerbations

Decreased rate of ICU/hospital admissions/ED visits

Molfino et al, ATS 2012
Benralizumab with novel mechanism of action enters Ph3 for eosinophilic patients

Differentiation
- Receptor vs. ligand approach
- Q4/8W subcutaneous dosing
- Complete eosinophil depletion with potential for improved clinical outcome\(^1\)
- Patient selection approach through blood test; targeted to discriminate eosinophilia

Development plan

Phase 3 start asthma
- Announced the Phase III Windward program on 30 October

Phase 2b asthma
- Patients with elevated eosinophils had a statistically significant reduction in exacerbation rate and improvements in lung function and asthma symptoms
- Efficacy and safety data supported progression to Ph3
- Results expected to be shared in 1H 2014

Phase 2a COPD
- Severe COPD with elevated eosinophils
- Study completed and decision pending

\(^1\) Depletion was reversible and was observed up to 3 months. Not seen in all doses
2) Tralokinumab (CAT-354): asthma Ph2b targeted against a cytokine central to asthma

- Target severe, inadequately controlled asthma
- Tralokinumab a fully human antibody targeting IL-13
- Key cytokine involved in many aspects of asthma
- Validated target from pre-clinical and clinical studies

Mechanism of Action: Anti-IL-13
Tralokinumab has demonstrated clinical response

Change in baseline in lung function

Development plan

Phase IIB asthma
- Assesses exacerbation reduction vs. placebo in severe uncontrolled asthma
- Evaluating spectrum of blood and serum biomarkers
- Decision on whether to move to Ph3 expected in H1’14

Other
- IPF as respiratory Life Cycle opportunity

Piper E et al. Eur Respir J. 2013, 41:330-8

FEV1 = Forced Expiratory Volume
IPF = Idiopathic Pulmonary Fibrosis
3) Brodalumab: high unmet needs remain for psoriasis and IL-17 family of cytokines are drivers of the diseases

- ~12M diagnosed PsO patients in the 7 major markets*
- Plaques that can cover >10% of the body
- Severe disease significantly impacts quality of life due to location of plaques, pain, bleeding, and arthritis
- Need new treatment options for rapid clearance of plaque and improve quality of life

Brodalumab is being co-developed by Amgen and AstraZeneca/MedImmune.

*2013 Decision Resources
Brodalumab (Ph3) Ph1/2 Results

Figure 1. Percentage Improvement in PASI Scores over Time. The P value for the comparison of the 70-mg dose of brodalumab with placebo (P<0.001) is for all the time points except week 2, for which the P value was 0.002. PASI denotes psoriasis area-and-severity index.

Brodalumab: Psoriatic Arthritis Phase 2 Study Summary

- Phase 2 study of brodalumab demonstrated efficacy in PsA with acceptable safety profile

- Primary endpoint of study was met with both doses of brodalumab (140 mg Q2W and 280 mg QW) demonstrating superiority to placebo for ACR 20 responses

- No new safety findings observed for brodalumab

- Brodalumab will be further evaluated in Phase 3 PsA studies
Additional Phase I and II Investigational Programs

<table>
<thead>
<tr>
<th>Disease area</th>
<th>Asset</th>
<th>Mechanism</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD</td>
<td>benralizumab</td>
<td>IL-5Rα</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>MEDI8968</td>
<td>IL1-R</td>
<td>II</td>
</tr>
<tr>
<td>Asthma</td>
<td>tralokinumab</td>
<td>IL-13</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>brodalumab</td>
<td>anti-IL-17R</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>MEDI9929</td>
<td>TSLP</td>
<td>I</td>
</tr>
<tr>
<td>IPF</td>
<td>tralokinumab</td>
<td>IL-13</td>
<td>II</td>
</tr>
<tr>
<td>Psoriatic Arthritis</td>
<td>brodalumab</td>
<td>anti-IL-17R</td>
<td>II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease area</th>
<th>Asset</th>
<th>Mechanism</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crohn’s Disease</td>
<td>MEDI2070</td>
<td>IL-23</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>MEDI7183</td>
<td>α4β7</td>
<td>II</td>
</tr>
<tr>
<td>SLE</td>
<td>MEDI5872</td>
<td>B7RP1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>sifalimumab</td>
<td>IFNα</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>MEDI-546</td>
<td>IFNαR</td>
<td>II</td>
</tr>
<tr>
<td>MS</td>
<td>MEDI-551</td>
<td>CD19</td>
<td>I</td>
</tr>
<tr>
<td>Ulcerative Colitis</td>
<td>tralokinumab</td>
<td>IL-13</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>MEDI7183</td>
<td>α4β7</td>
<td>II</td>
</tr>
<tr>
<td>RA</td>
<td>mavrilimumab</td>
<td>GM-CSF</td>
<td>II</td>
</tr>
<tr>
<td>HS</td>
<td>MEDI8968</td>
<td>IL1R</td>
<td>II</td>
</tr>
</tbody>
</table>

RDEA3170 and MEDI-551 MS are not shown in the earlier pipeline view which is an NME-only view.
MedImmune’s Competitive Advantage in RIA

Robust pipeline

- Broad spectrum of respiratory and autoimmune diseases

Transformative therapies

- To evolve treatment paradigm from “failure-based approach” to personalized

Accelerated delivery

- Multiple programs with potential to move into Phase III by the end of 2014
Exploring New Approaches in Oncology

Dr. Ed Bradley, Senior Vice President and Head of the Oncology iMed, MedImmune
MedImmune Oncology Biologics Strategy

Specific Immune Targeting

- Generating potent immunologic response via T cell modulation and other immune cell mechanisms
- Potential activity in the majority of tumor cancers

Specific Tumor Targeting

- Armed antibodies
- Precise tumor targeting to cause cell death with range of technologies, including Antibody-Drug Conjugates
Empowering the Immune System to Fight Cancer

“If we are ever going to use the word ‘cure’, the immune system is going to come into play.”

Stephen Hodi, M.D., Dana-Farber, WSJ 6/14/11
Critical Checkpoints Hijacked by Cancer

Putting the Gas on the immune system

(+) Activating Receptors

MEDI6469

Putting the Brakes on the immune system

(−) Inhibitory Receptors

Tremelimunab

AMP-514

MEDI4736

Adapted from Mellman, I. Nature 480: 480-489, 2011
Spotlight: MEDI4736 or Anti-PD-L1 mAb

Tumor Microenvironment

Draining Lymph Node

1. T Cell
2. Enhanced Activation
3. T Cell
4. Activation Expansion

Effector T Cell

Perforins Granzymes

TCR

T Cell Antigen

PD-L1

PD-1

MHC = Major Histocompatibility Complex
APC = Antigen-Presenting Cell
TCR = T-Cell Receptor

MEDI4736

APC

PD-L1

PD-1

MEDI4736

MEDI4736

Perforins Granzymes
How This Works
IMT-C and IMT-C Combinations Are Now Clinically Validated

ASCO 2011

Approval of first anti-CTLA4 with impressive prolonged OS, in melanoma

ASCO 2012

Next IMT pathway validated: PD-1 extends activity to lung

ASCO 2013

Synergy of PD-1 and CTLA-4 dramatically validated pre-clinical models
Immune Therapy Portfolio Enables Novel Combinations

Tremelimumab
Anti-CTLA-4 mAb
- Phase 2 in solid tumours
- Validated pathway
- Safety and efficacy data in >1,000 patients
- Focus on use in novel combinations

MEDI4736
Anti-PD-L1 mAb
- Phase 1 in solid tumours
- Validated pathway in multiple tumour types
- Multiple Phase 1 to Phase 3 opportunities

AMP-514
Anti-PD-1 mAb
- Humanized, anti-PD-1 IgG4
- Mechanistically differentiated
- Late stage pre-clinical development

MEDI6469
mOX40 agonist mAb
- Murine mAb in Phase 1 in solid tumours
- Clinical activity with single cycle in refractory patients
- First-in-class; follow on molecules will build on single agent and combination data

1 Ribas et al., J Clin Oncol 2013; 31:616-622
2 Internal data
3 Weinberg, AACR Tumor Immunology Conference Presentation, 2012

Multiple IMT-C pre-clinical programs provide additional combination opportunities
MEDI4736 – Early Phase 1 Clinical Activity Observed

Phase I Highlights

• Encouraging level of clinical activity in Phase 1 dose escalation with responses observed at lowest dose tested

• Early tumor shrinkage was observed across a range of doses

• Manageable safety profile, relative to the small data set

Documented Clinical Evidence

*Data as of 19Aug2013.

Note: Posttreatment CT scans not available for 2 patients (1 NSCLC patient each at 0.1 and 0.3 mg/kg).

NSCLC, non–small cell lung cancer.

n = 9
IMT-C Development Plan Focused on Novel, Proprietary Combination Opportunities

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy in new indications with favourable immune signature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novel IMT-C combinations:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MEDI4736 (PD-L1) + Tremelimumab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CTLA-4 + mOX40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other proprietary IMT-C combinations, including with AZ small molecules (e.g. IRESSA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMT-C combinations with Standard of Care (e.g. chemotherapy, TKIs, RT)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Registration enabling trials begin

- **Trials initiated**: 2013 H2, 2014 H1, 2015 H2
- **Data read-outs begin**: 2015 H2

Abbreviations
- TKI – tyrosine kinase inhibitor
- RT – radio therapy
The Power of a Combined Portfolio

AZ and MedImmune are uniquely positioned to combine agents within and between key scientific mechanisms.

Selected Programs

- **Target key tumor drivers and resistance**
 - AZD4547 (FGFR)
 - Selumetinib (MEK)
 - AZD9291 (EGFR)

- **Tip cancer cells into cell death**
 - MEDI-551 (CD19)
 - Moxetumomab pasudotox (CD22)
 - Olaparib (PARP)
 - MK-1775 (WEE1)
 - ADC

- **Enhance immune response to improve overall survival**
 - MEDI4736 (PD-L1)
 - AMP-514 (PD-1)
 - MEDI6469 (mOX40)
 - Tremelimumab (CTLA-4)

AZD4547 (FGFR)
Selumetinib (MEK)
AZD9291 (EGFR)
MEDI-551 (CD19)
Moxetumomab pasudotox (CD22)
Olaparib (PARP)
MK-1775 (WEE1)
ADC
MEDI4736 (PD-L1)
AMP-514 (PD-1)
MEDI6469 (mOX40)
Tremelimumab (CTLA-4)