Contents

Our R&D culture

Three organisations. One aim

08 Our therapy areas – Oncology
10 Our therapy areas – Cardiovascular, Renal and Metabolism
12 Our therapy areas – Respiratory and Immunology
14 Our therapy areas – Neuroscience, Microbial Science and Rare Disease
16 Our expert functions

Focusing on quality, not quantity

Transforming our science

22 Data science & AI are transforming drug discovery and development
24 Enhancing our understanding of disease biology
26 Creating the next generation of therapeutics
30 Better predicting clinical success
34 Pioneering new approaches to engagement in the clinic and beyond
36 Our R&D response to COVID-19

Keeping doors and minds open

40 Working side-by-side with academic institutions
41 Open innovation

R&D places and people

44 Strategic science centres
46 Inspiring great scientists

Making our science sustainable

54 Some facts about R&D sustainability

Led by science. Driven by patients
Our R&D culture

We are driven by science, united by science, and every day, we push the boundaries of science to deliver life-changing medicines.

We have a unique R&D culture where people with curious minds are inspired to think creatively. Free from fear of failure, free to ask the right questions, make bold decisions, and dig deep into the biology of complex diseases.

At the same time, we are harnessing data and technology to fast-forward the pace of our science. Helping us achieve the next wave of breakthroughs and do things that have never been done before.

It is a culture where people are able to work collaboratively and inclusively together. In an environment where all doors are open, talent and diversity are celebrated, and every voice is heard.

We are always learning from people who live with the diseases our medicines treat. So we can understand their needs and make sure that great science born in the lab can make a real difference to their lives.

It’s by creating and sustaining this culture that we are able to help unlock the power of what science can do. This is AstraZeneca R&D. This is what we are made of.

Medical Chemist in our labs in Macclesfield, UK

Inspiring people with curious minds

Harnessing data and technology

Working collaboratively and inclusively

Always learning from patients
Three organisations. One aim

We have three therapy-focused R&D organisations who lead all our work, from discovery through to late-stage development.

Oncology R&D is focused on cancer. BioPharmaceuticals R&D on Cardiovascular, Renal and Metabolism (CVRM), Respiratory and Immunology, and opportunistically, Neuroscience and Microbial Science. Rare Disease is focused on rare diseases across multiple therapy areas.

The three organisations work both independently and together, and there are shared functions specialising in key scientific capabilities from medicinal chemistry to biometrics, patient safety to data science and artificial intelligence (AI), and clinical innovation to device technology. All of this helps us accelerate discovery and development in our efforts to bring new medicines to patients. Our R&D groups are unified in their approach, and united in their purpose to deliver life-changing medicines to people who need them most.

Our R&D groups are unified in their approach, and united in their purpose to deliver life-changing medicines to people who need them most.

Natural killer cell recruited by biologic.

Eosinophil prior to apoptosis.

Oncology R&D
Lung, Breast, Ovarian, Haematology, Pancreatic, Bladder, Liver, Prostate

BioPharmaceuticals R&D
Cardiovascular, Renal & Metabolism, Respiratory & Immunology, Neuroscience, Microbial Science

Rare Disease R&D
Haematology, Nephrology, Neurology, Metabolic Disorders, Cardiology and Ophthalmology

AstraZeneca R&D 7
Our therapy areas – Oncology

At AstraZeneca Oncology R&D, we are pushing the boundaries of science to change the practice of medicine and transform the lives of patients living with cancer, with the aim of eliminating cancer as a cause of death. We have one of the broadest and deepest oncology pipelines in the industry, based on six scientific platforms: Immuno-Oncology, DNA Damage Response, Antibody Drug Conjugates, Tumour Drivers and Resistance Mechanisms, Cell Therapies, and Epigenetics.

Our approach to eliminating cancer is to identify and treat patients earlier in the progress of their disease when there is potential for cure, and to improve the treatment of relapsed or refractory patients by addressing emerging resistant populations, particularly in later stages of disease. With a focus on monotherapy and combinations, biomarker-driven innovative clinical trials and digital technologies, we are confident that cures for cancer are within our grasp.

Antibody-drug conjugates (ADCs)

A cancer-killing drug is attached to the monoclonal antibody through a stable connection (the linker), creating the ADC. The ADC binds to specific proteins on the surface of cancer cells, and it is then internalised into the cell. Once inside the cancer cell, the cytotoxic drug is released, destroying the cancer cell.
Three organisations. One aim

Our therapy areas – Cardiovascular, Renal and Metabolism

Our ambition is to stop, reverse, and cure these diseases by delivering innovative, life-changing medicines and solutions for patients. To do this, we need to unravel the underlying causes of these diseases by identifying novel targets linked to disease biology to create the next generation of therapeutics.

We have built knowledge and invested in key technologies to develop both our pipeline and our level of scientific expertise. We couple this with a patient-centric approach aimed at better understanding the interplay and potential causal relationship between these diseases, which often present in the same patient. Our approach is opening up unprecedented opportunities for novel treatment paradigms to help more patients and strengthen our pipeline with further differentiated medicines.

Cardiovascular, renal and metabolic diseases
CVRM diseases such as heart failure, cardiovascular disease, diabetes and chronic kidney disease share common and distinct mechanisms. AstraZeneca is researching the interplay and potential causal relationship between these diseases with the aim of improving outcomes in patients with one specific diagnosis before co-morbidities emerge.
Our therapy areas – Respiratory and Immunology

We are rewriting the future of respiratory and immunology conditions, evolving from pure symptom control to disease modification, remission and, one day, cure.

Our vision, to defy the natural course of disease, focusing on earlier and smarter interventions, will enable us to reach more patients earlier, slow disease progression and drive remission.
Our therapy areas – Neuroscience and Microbial Science

Additionally, we pursue opportunity-driven projects in neuroscience and microbial science.

Our business model thrives on being dynamic and partly externalised, with a firm focus on driving science in our key areas of interest. Early, flexible partnering with the brightest and best in the world allows us to combine knowledge and progress clinical development, while managing the challenges associated with neuroscience and microbial science research.

Our therapy areas – Rare Disease

In July 2021, AstraZeneca completed the acquisition of Alexion Pharmaceuticals Inc., resulting in the creation of our new Rare Disease group. Our mission is to transform the lives of people affected by rare diseases and devastating conditions. We are building on our pioneering leadership in discovering and developing therapies that target the complement system, a foundational part of the body’s immune system, by driving innovative research and development across new disease targets and modalities. Combined with disciplined business development activities, we aim to further expand our pipeline into additional rare disease indications. By understanding patients’ unique needs, we can research and develop innovative medicines, support access and advocate for the rare disease community.
Our expert functions

Discovery Sciences

Discovery Sciences applies deep technical expertise in specialist technologies to support the delivery of targets and molecules to the early AstraZeneca pipeline. Targets are identified through our human genomics and functional genomics efforts, employing the latest technologies in genome editing and advanced cell model development. Once identified and validated, we work with therapy area project teams to identify novel small molecule effectors of these targets using our integrated sample management and platform screening groups.

Biologics Engineering

The Biologics Engineering team is a science-led expert function of people with curious minds who are discovering and engineering novel biomolecules. We are committed to building end-to-end capabilities in all aspects of biologics design, engineering, screening, analytics, and development, to create first or best-in-class therapeutics across all of our therapy areas. As well as monoclonal antibodies, we are pioneering in complex modalities such as antibody-drug conjugates, multi-specific antibodies and minibodies, circuits and engagers, nanomedicines, recombinant peptides and Cell/GAR T therapies. Our team is also developing novel antibodies for targeted therapies to the lungs and kidneys, and new biologics for engaging the microbiome.

Precision Medicine & Biosamples

Our vision is to transform patients’ lives through personalising treatment, delivering innovative diagnostics with external partners aiming to match AstraZeneca drugs to patients most likely to benefit. Over 90% of our clinical pipeline takes a precision medicine approach. Furthermore, our Biosamples team provides end-to-end expertise for the whole R&D portfolio across the Human Biological Samples Lifecycle to meet our obligations to patients, including the lab analysis essential for safety.

Clinical Pharmacology & Safety Sciences (CPSS)

CPSS provides non-clinical safety, clinical pharmacology and quantitative modeling support to the R&D portfolio, with expertise in mechanistic discovery safety, regulatory toxicology, pathology, animal sciences, clinical pharmacology and pharmacometrics, quantitative modeling and data sciences. Our work impacts molecule design, selection, clinical study design, dosing regimens, regulatory approval of new medicines and life-cycle management.

Pharmaceutical Sciences

Pharmaceutical Sciences is responsible for key aspects of chemistry, manufacturing and control, from discovery to phase II trials. The function influences the intelligent design of medicines and delivery systems across all therapeutic areas, applying expertise in novel synthetic route and process design, data science and modelling; formulation and advanced drug delivery, as well as delivering to high standards from our drug substance and drug product manufacturing GMP facilities.

Biopharmaceutical Development (BPD)

Working across all our therapy areas, BPD integrates cell biology, process science, molecular structure and function, solution and solid-state chemistry, advanced data analytics and engineering to create industry-leading technologies. These in turn facilitate efficient production of novel biologics, stable formulations for delivering new medicines, new drug delivery systems and patient-friendly devices. All of this helps us transform research into life-changing medicines.

Development Operations

Development Operations is here to deliver science through a wide range of specialist expertise, operational excellence and data-driven innovation. These enable us to drive extensive clinical trial programmes from design to regulatory submission and approval. Providing the key connection between science and commercialisation, we deliver trials to the highest standards of quality, efficiency and ethics to thousands of patients globally.

Data Science & AI (DS&AI)

DS&AI works across R&D to drive innovative data science and AI applications. By drawing actionable insights from our data, DS&AI acts as a data management and governance hub, helping bring transparency to discovery sciences and drug development. Together with our R&D and IT colleagues, we are harnessing new technologies to improve our disease understanding, accelerate the R&D process, and improve diagnosis with an ambition to bring new medicines to patients faster and more effectively.

Digital Health R&D

Digital Health R&D leads the strategy and operational delivery of digital health solutions across R&D. Our aims are to help predict, prevent and treat patients’ conditions more effectively. We do this using digital, data and analytics to improve and speed up portfolio development, improve patients’ clinical trials experience and patient outcomes, and re-Imagine the future of healthcare via partnerships and innovative digital solutions.

R&D Information Technology (IT)

R&D IT uses technology to transform the speed and quality of our discovery and delivery of medicines to patients. The team helps optimise scientists’ daily lives through the use of new IT technology, but are also committed to transforming R&D by creating and building new digital and data science platforms to increase R&D success and reduce timelines. Expertise includes automation, analytics-ready data, scaled engineering, high-quality digital applications, seamless integration and technology innovation.

Business Development & Licensing

Business Development & Licensing’s remit includes search and evaluation, transactions, and alliance management. Our role is to enrich the R&D pipeline and technological capability through external innovation from discovery to late clinical development by partnering with biotech companies, peer pharma and academic institutions. In this way, we can help ensure that both our science and portfolio are fit to meet future challenges by maximising the value of our strategic partnerships.

Chief Medical Office (CMO)

The CMO works globally and is responsible for patient safety, regulatory excellence, quality assurance, clinical engagement and policy. Functioning across the enterprise, our priority is to continually improve the way we deliver our products and services. By creating opportunities for meaningful patient engagement, maximising access to medicines, and strengthening our commitment to a safe science culture, we aim to create better experiences and outcomes.

Chief Operating Office (COO)

The COO’s role is helping create world-class partnerships and work environments across all our sites, globally. We provide leadership in strategy, decision making, operational excellence, risk management, and specialist administration, as well as scorecards, reporting and publications compliance. We also nurture the pipeline of new scientists joining us through our global graduate, PhD and postdoc programmes, helping make great science possible.

R&D Japan

R&D Japan has extensive capabilities in clinical development across all our therapy areas, driving studies from early development to life-cycle management. Supporting both local and global programmes, we are able to factor in local medical and regulatory requirements to help accelerate patient access, and lead global programmes for diseases prevalent in Asia, fostering partnerships and alliances to help create ground-breaking science.

R&D China

R&D China also has clinical development expertise across small molecules and biologics, helping accelerate the development of innovative medicines for Chinese patients, and lead the delivery of global programmes in all our therapy areas. Our strategic investments in China include a pharmaceutical development hub and local manufacturing facilities, and R&D China drives our portfolio locally, as well as supporting the global development of our most promising medicines.

Our R&D culture

Focusing on quality, not quantity. Led by science. Making our R&D places and people

Transforming science sustainable and people

Chief Medical Office (CMO)

The CMO works globally and is responsible for patient safety, regulatory excellence, quality assurance, clinical engagement and policy. Functioning across the enterprise, our priority is to continually improve the way we deliver our products and services. By creating opportunities for meaningful patient engagement, maximising access to medicines, and strengthening our commitment to a safe science culture, we aim to create better experiences and outcomes.

Chief Operating Office (COO)

The COO’s role is helping create world-class partnerships and work environments across all our sites, globally. We provide leadership in strategy, decision making, operational excellence, risk management, and specialist administration, as well as scorecards, reporting and publications compliance. We also nurture the pipeline of new scientists joining us through our global graduate, PhD and postdoc programmes, helping make great science possible.

R&D Japan

R&D Japan has extensive capabilities in clinical development across all our therapy areas, driving studies from early development to life-cycle management. Supporting both local and global programmes, we are able to factor in local medical and regulatory requirements to help accelerate patient access, and lead global programmes for diseases prevalent in Asia, fostering partnerships and alliances to help create ground-breaking science.

R&D China

R&D China also has clinical development expertise across small molecules and biologics, helping accelerate the development of innovative medicines for Chinese patients, and lead the delivery of global programmes in all our therapy areas. Our strategic investments in China include a pharmaceutical development hub and local manufacturing facilities, and R&D China drives our portfolio locally, as well as supporting the global development of our most promising medicines.

Development chemists in our labs in Mihara, Japan
Focusing on quality, not quantity

Our drug discovery and development is guided by our 5R Framework, which champions quality over quantity, and has helped transform the culture of R&D and our business.

Since 2005, it has enabled us to achieve industry-leading R&D productivity levels of 23% – defined as molecules progressing from candidate drug nomination to phase 3 completion – compared to a current industry average of 14%.*

Developments in diagnostics

With 90% of our pipeline taking a precision medicine approach, compared to just 10% in 2009, we have been able to make significant steps forward in diagnostics. These include a broad range of cutting-edge technologies, such as tumour tissue diagnostics, molecular tests, and point-of-care diagnostics.

Since 2014, we have launched five precision medicine therapies linked to 35 different diagnostic tests, and are working towards developing technologies that can detect early disease. For instance, we are exploring tests based on circulating tumour DNA to measure minimal residual disease in colorectal cancer, which could lead to patients being treated with new therapies at an early stage, when response rates are higher.

* in-house data (2017-2021) and Centre for Medicines Research (CMR), a subsidiary of Clarivate (2018-2020).

Thinking beyond oncology, we have developed point-of-care tests for respiratory diseases, such as measuring a biomarker for eosinophils with ChemBio Diagnostic Systems, and for inflammation, by measuring serum uric acid with Nova Biomedical. We are also exploring the use of CRISPR technology for diagnostics across many different disease areas.
We are never complacent about scientific discovery and development, always pushing our R&D productivity, searching for new knowledge and the next breakthrough.

Our ‘Growth Through Innovation’ strategy will guide our business to 2025 and beyond, supporting us in advancing our scientific knowledge to extend the possible and helping shape the future of healthcare. We are committed to investing in and embedding four key areas, which will help us in our aspiration to create the greatest and swiftest impact on disease.

- Enhancing our understanding of disease biology with the aim of treating, preventing, modifying and even curing complex diseases
- Discovering new ways to target the drivers of disease to create the next generation of therapeutics
- Better predicting clinical success to make sure we accelerate delivery to get the right medicines to the right patients
- Pioneering new approaches to engagement in the clinic and beyond to deliver a better experience for the patient, and by doing so, improve outcomes
Data science & AI are transforming drug discovery and development

AI and machine learning are starting to transform the way we discover and develop new medicines. We hope to be able to increase the probability of success and reduce timelines in our drug discovery and development process by applying advanced AI and machine learning across R&D.

We are embedding AI across all of our R&D activities, from target identification to clinical trials to understand where we can harness new technologies and further automate processes. Our vision is one of freeing up more time for discovering and delivering as many new medicine programmes as we can from our innovative pipeline.

We are using AI to help us analyse and interpret huge quantities of data at all stages of drug discovery and development. We aim to gain a better understanding of the diseases we want to treat, identify new targets for novel medicines, speed up the way we design, develop and make new drugs, design and recruit for better clinical trials, and drive personalised medicine strategies.

FAIR foundations, the right architecture and continuing investment

Today, we are generating and have access to more data than ever before. But the true value and transformational potential of scientific data can only be realised if it is ‘FAIR’ – Findable, Accessible, Interoperable and Reusable.

Making sure that we have the correct foundations for data science and AI is critical to our continued success. We have to get the data into the right shape, embed the right governance, implement the right analytical tools, and most importantly, get the right data into the hands of the right people to yield transformational benefits. This is why a concerted, cross-company effort around data and analytics is so important.

We are creating an enterprise-wide data and AI architecture. To achieve this, we are bringing the right people together – data scientists, bioinformaticians, data engineers and machine learning experts – to ensure that we are collecting, organising and using the right data, in the best way possible.

At the same time, we are also investing in internal training and education so that everyone in R&D understands our approach to data science and AI and can use or partner with the right experts to unlock data and apply it effectively.
Enhancing our understanding of disease biology

We are determined to advance our understanding of disease biology to uncover novel drivers for the diseases we aim to treat, prevent and in the future, cure. Selecting the right target remains the most important decision we make in the drug discovery process. We are investing in multiple approaches to improve this:

• Through our Genomics Initiative, we aim to analyse 2 million genomes by 2026 to identify rare genetic variants to uncover new targets and disease insights.

• We are investing in broader multi-omic technologies, such as transcriptomics, proteomics and metabolomics, to probe the more complex and transient molecular changes that underpin the course of disease and responses to drug treatment.

• Our use of precise gene and base editing technologies continues to help us create more relevant cell lines and animal models in a matter of weeks, as opposed to months or longer still.

• At our AstraZeneca–Cancer Research UK Functional Genomics Centre at the Milner Therapeutics Institute in Cambridge, in the UK, we aim to discover new targets by using CRISPR libraries to delete or upregulate every gene in the cell to understand the role of that gene in disease biology.

• We are combining these rich datasets with external data sources, and applying AI and machine learning to develop biomedical knowledge graphs to contextualise scientific data and the relationships between them in partnership with companies such as BenevolentAI.

Knowledge graphs

Knowledge graphs are networks of contextualised scientific data facts such as genes, proteins, diseases and compounds, and how they relate to each other. We are embarking on a long-term collaboration with BenevolentAI to use AI and machine learning to build knowledge graphs for chronic kidney disease (CKD) and idiopathic pulmonary fibrosis.
Creating the next generation of therapeutics

In our quest to transform disease, we believe it is essential to target novel biology we uncover. We are continuing to design new ways to target the drivers of disease to help us create the next generation of therapeutics – going beyond traditional small molecules, monoclonal antibodies and peptides.

By combining our distinctive medicinal and peptide chemistry skills and technologies with those of other leading companies in highly specialised fields, we are working towards our goal of addressing the unmet medical needs of patients.

The diversity of technologies applied in our early pipeline is exemplified by the increased number of new modalities entering clinical development. 30% of our early pipeline now consists of new drug modalities, including oligonucleotides, mRNA, bicyclic peptides and Anticalin® proteins.
Drug modalities
Pioneering new approaches to drug discovery

Small molecule
A small molecule is a low-molecular weight (less than 900 daltons) organic compound.

Antibody platforms
Antibodies target proteins with exceptional specificity and can be engineered to target multiple proteins (bispecific antibodies), combine with linker molecules (antibody drug conjugates), reduce in size (fragment antibody) or modify delivery via mRNA or DNA (in vivo expressed biologics) to improve specificity, potency and targeting.

Therapeutic protein
Proteins consist of one or more chains of amino acids, linked together by peptide bonds. There are 20 naturally occurring amino acids that make up the building blocks of proteins. Antibody-based drugs are an example of a group of therapeutic proteins.

Anticalin® protein
Anticalin® proteins are artificial proteins derived from human lipocalines. They have a diversifiable amino acid sequence that results in four loops. These loops assemble into a cup-like structure that can bind both smaller and larger molecules.

Bicyclic peptide
Bicyclic peptides are synthetic, highly constrained peptides, typically between 9 and 15 amino acids in size.

Cell therapy
Novel stem cell-based therapy aimed at regenerating damaged tissue.

Oligonucleotides
Oligonucleotides are short DNA or RNA molecules that interact with messenger RNA to prevent translation of a targeted gene. Targeted oligonucleotides are short DNA or RNA molecules that interact with mRNA to prevent translation of a targeted gene. Targeted oligonucleotides can be engineered to: target multiple proteins (bispecific antibodies), combine with linker molecules (antibody drug conjugates), reduce in size (fragment antibody) or modify delivery via mRNA or DNA (in vivo expressed biologics) to improve specificity, potency and targeting.

Modified RNA
Modified RNA is a single-stranded RNA that conveys genetic information from DNA to the ribosome, where it is translated into protein products. Advances in RNA technologies include replicase in the coding sequence allows the amplification of the number of RNA copies that can be produced. Self-amplifying RNA is the next disruptive mRNA platform.

Antisense technology
Antisense technology allows the transcription of DNA to be blocked, thus preventing the formation of new proteins associated with disease.

CRISPR gene editing
CRISPR/Cas9 exploits a natural bacterial defense mechanism, to precisely edit the genome in somatic gene defects.

CRISPR/Cas9
CRISPR/Cas9 is a powerful genome editing tool that can introduce specific changes into the human genome.

Semin Nephrol
Disease risk variants – an evolving landscape.

Oncolytic viruses
Oncolytic viruses are designed to both selectively kill tumour cells and activate the immune system against cancer cells. They have the potential to improve clinical response and survival when used in conjunction with Immuno-Oncology treatments in our pipeline.

Ionis Pharmaceuticals
Antisense technology
Moving ahead with Anticalin® technology
This is designed to deliver engineered proteins which are significantly smaller than monoclonal antibodies, each tailored to bind with antibody-like potency and selectivity to a drug target of interest. Their small size makes them strong candidates for direct delivery by inhalation to the lung.

Procella Therapeutics and the Karolinska Institute in Sweden
Advancing regenerative medicine using stem cells

Ionis Pharmaceuticals
Antisense technology
Broadening our approach across therapy areas
Antisense oligonucleotides (ASO) are designed to bind precisely with specific RNAs thereby modifying the production of proteins potentially associated with disease. One of our molecules targets the mRNA for APOL1 and has shown encouraging results in preclinical models. Several variants of the APOL1 gene evolved in sub-Saharan West Africa providing protection from Trypanosoma infections, but people carrying two copies of these variants have an increased risk for developing chronic kidney disease (CKD3). APOL1 knockdown through ASOs is being explored with the aim of being a precision medicine in CKD and, if successful, would provide a novel treatment option for patients with APOL1-mediated CKD.

Transgene
Innovative oncolytic virus immunotherapies
Oncolytic viruses are designed to both selectively kill tumour cells and activate the immune system against cancer cells. They have the potential to improve clinical response and survival when used in conjunction with Immuno-Oncology treatments in our pipeline.

Ionis Pharmaceuticals
Antisense technology
Moderna
mRNA therapy passing a major milestone in cardiac regeneration
mRNA is the ‘mediator’ in the process by which genetic information contained in DNA in cells is transferred to make proteins. The beauty of mRNA-based therapy is that it can act locally and transiently, and doesn’t integrate into an individual’s genome. Instead, the aim is to augment the endogenous processes that prevail naturally in the body.

Cell therapy
Novel stem cell-based therapy aimed at regenerating damaged tissue.

Anticalin® protein
Anticalin® proteins are artificial proteins derived from human lipocalines. They have a diversifiable amino acid sequence that results in four loops. These loops assemble into a cup-like structure that can bind both smaller and larger molecules.

Bicyclic peptide
Bicyclic peptides are synthetic, highly constrained peptides, typically between 9 and 15 amino acids in size.

Cell therapy
Novel stem cell-based therapy aimed at regenerating damaged tissue.

CRISPR gene editing
CRISPR/Cas9 exploits a natural bacterial defense mechanism, to precisely edit the genome in somatic gene defects.

Better predicting clinical success

In our efforts to improve our ability to predict the clinical success of our candidate drug molecules, we are adopting a range of cutting-edge technologies.

Humanised models

Humanised models bridge the gap between animals and humans and are a big step forward compared to the conventional human cell cultures which have been in use for many years. These models provide an environment in which human cells behave more like they would in the body, generating data about toxicity, efficacy and other key effects that are more relevant to patients than previous methods.

• Organ-Chips help us to recreate what happens in full-size tissues and organs. Recently published research in collaboration with Emulate, Inc. and the Wyss Institute at Harvard University, demonstrates the ability of the Liver-chip to model the liver toxicity of eight previously-studied compounds, and the Bone marrow-chip to effectively replicate drug-induced toxicity responses observed in human patients at clinically relevant doses.

• 3D bioprinting and organoid models are helping us create complex structures for research into kidney and other diseases where pre-clinical to clinical translation is a challenge. Our collaboration with Harvard University created human vascularised renal proximal tubules to study cellular crosstalk and the behaviour of our compounds in the kidney.

• In the development of ‘miniature organs’ to recreate the mechanical and electrical properties in a beating heart, we are working with Novoheart, using their 3D human ventricular cardiac organoid chamber. This ‘heart-in-a-jar’ technology is designed to reproduce key characteristics of heart failure with preserved ejection fractions.

CRISPR-Cas9 genome editing

CRISPR is a powerful tool in target selection and validation. It can be used to create precise genetic disease models, often involving the change of a single nucleotide. We have applied CRISPR to create over 120 cellular disease models in which we have deleted or introduced single nucleotide changes to genes to examine the effect of specific genes on disease pathways.

Mass spectrometry imaging

Mass spectrometry imaging helps us to capture, at a molecular level, the exquisite cellular interaction that can both define a disease, and also monitor for effective treatment. By retaining the spatial complexity in a tissue sample, we can monitor the modulation of biomarkers in tissue in response to drug treatment, while simultaneously also quantifying drug biodistribution and immune cell populations. These technologies can give us a holistic view of our complex preclinical models that inform pre-clinical decision making.

Patient-derived xenograft models

Patient-derived xenograft models are helping us recreate the complexity and heterogeneity of a tumour for studying late-stage cancers, and model the mechanisms by which tumours become resistant to current therapies. With the University of Colorado in the US, we are continuing to show how different patient-derived xenograft models can help define new combination therapies in oncology.
Model-informed drug development

Quantitative pharmacology uses advanced analytical modelling to generate new and vital insights on drug efficacy and safety across the entire drug discovery and development continuum. Through modelling, simulation, systems pharmacology and advanced bio-analytic techniques, we are interrogating how drug candidates interact within the human body to help inform decisions about the optimal balance between efficacy and safety. Working collaboratively with partners across AstraZeneca and beyond, we provide unique insights and expertise to ensure we deliver the right dose to the right patients.

With an extensive skill-base in clinical pharmacology, phamacometrics, statistics and biometrics, our collective of expert scientists are pioneering new ways to extend our predictive modelling capabilities. By combining the latest computational technologies with the diverse expertise of our people, we deliver clinical programmes with greater speed, quality and efficiency.

Using extensive clinical pharmacology data, our teams are designing drug development models to simulate virtual trials that:

- Examine how the benefit-risk profile of a potential drug candidate is impacted by real world variables such as age, sex or comorbidities.
- Offer insight into how a potential drug candidate may perform against current treatments or in combination with other therapies.
- Predict outcomes for efficacy and safety across different patient profiles, helping expand the reach of our drug candidates to additional patient populations who may benefit.

By providing these approaches, Quantitative Pharmacology is an important complement to the traditional toxicology and animal science methods in drug safety studies, and is key to helping better predict and deliver clinical success for AstraZeneca and the patients we serve.

Circulating tumour DNA (ctDNA) in Oncology

Circulating tumour DNA (ctDNA) are small DNA fragments that often leak from cancer cells into a patient’s bloodstream. The detection and analysis of ctDNA may provide valuable insights about a patient’s prognosis or information on how well a treatment is working. Researchers are investigating whether ctDNA measurements can identify patients with minimal residual disease (MRD) who may be at higher risk for disease recurrence post-surgery or post-adjutant therapy.

Identifying MRD may enable physicians to intervene earlier and to offer personalised, effective treatments that could increase survival and improve quality of life. We are collaborating with diagnostics experts like ArcherDX to generate highly sensitive, personalised ctDNA assays to test for MRD, which has the potential to inform patient prognosis and to tailor individualised treatment options.
Digital technologies are creating never-before-seen opportunities to improve clinical practice and engagement both in the clinic and beyond, helping to increase efficiencies and effectiveness for clinicians and supporting better experiences for patients.

In a typical year, we conduct over 240 global clinical trials, involving more than 123,000 patients in around 60 countries. Digital technologies enable us to improve design and reduce set-up time. Electronic health records will help to improve delivery and enable us to more accurately forecast drug supplies, avoiding waste and delays. Trials will be more patient-centric, with less burden on the patients, and the value of the information we get from these trials will be greater, helping us to make faster and more effective decisions.

Digital is helping patients optimise medication use, connect with medical staff, and manage or prevent adverse events during trials. Invasive monitoring is being replaced with digital alternatives. Finger prick glucose monitoring, for example, is being replaced by patches that give continuous readings. It is also helping us improve disease understanding and patient outcomes, and in early trials, we are exploring new digital markers – for instance, determining the relevance of fractional exhaled nitrous oxide (FeNO) as a biomarker in assessing lung inflammation.

As our digital capabilities grow, we are able to explore how we can help patients prevent, manage or treat their condition with evidence-based, digital therapeutic solutions. For instance, with Voluntis and the National Cancer Institute, we are developing a digital therapeutic for women being treated for recurrent platinum-sensitive high-grade ovarian cancer. Currently in clinical trials, this aims to support patients through tolerability and management of adverse effects – recently winning the Prix Galien award for best patient engagement technology.
Our R&D response to COVID-19

Our R&D response to the COVID-19 pandemic highlights our commitment to science, collaboration, and delivering life-changing medicines to the people who need them most. When the true scale of the crisis became clear:

We rose to the call
In April 2020, we answered the call from the UK government to help bolster the national testing effort. In collaboration with the University of Cambridge, GSK and Charlestown Laboratories, we helped to set up the Cambridge Testing Centre in just five weeks turning a few empty rooms into a high-throughput testing facility. In just 12 months, the centre delivered over 3.25 million samples.

In addition to delivering the testing required, we also innovated and streamlined the process. Together with our partners, we reduced the amount of testing reagent required by half, partnered with Biologic and Electrolux Professional to make samples safer and testing more scalable and sustainable, developed a new direct-to-PCR approach alongside Primer Design reducing time-to-results by two hours, and deployed a pooled testing approach, enabling more people to be tested with fewer samples to support mass testing.

Our commitment to finding new treatments...
Since 2018, we have been working on a novel platform to discover and manufacture therapeutic antibodies of an unknown viral pathogen in less than 60 days. The platform uses microfluidics to screen antibodies from individualised B cells, and enabled us to move our potential long-acting antibody (LAAB) combination from discovery to clinical trials in less than 3.5 months. Our expertise in antibody discovery also enabled us to extend the lifetime of the LAAB in the body from 3 months to potentially up to a year.

LAA Bs could potentially treat or prevent disease progression in patients already infected with the virus, or be given as a preventative measure prior to exposure for those people for whom a vaccine may not be appropriate.

…and developing a vaccine made for the world
We partnered with Oxford University to develop a COVID-19 vaccine made for the world at no profit during the pandemic. To deliver the vaccine to as many countries as possible, we set up more than 25 new supply partners in over 15 countries, and heavily invested in our existing facilities to increase their productivity. Overall, we cut our supply chain distribution time down from 6 years to 300 days.

AstraZeneca was the first global pharmaceutical company to join the COVAX facility in June 2020. We and our partners are the largest contributors to COVAX, providing over two-thirds of all vaccines supplied so far. We are committed to the global mechanism to develop and produce new tools to tackle COVID-19, and enable equitable access to them across the world, for all participating countries, regardless of income level.

We continue to follow the science and develop new solutions and strategies to respond to the evolving SARS-CoV-2 virus, to help safeguard the health and wellbeing of communities around the world.

Keeping our employees safe globally
We established our internal COVID-19 testing programme in just 18 days in March 2020. Initially set up to safeguard those working on-site and maintaining our supply of medicines, we quickly expanded the programme to include regular PCR and antibody testing to employees at our key sites and out in the field. Over the pandemic, we switched from nasal swabs to saliva sampling to make testing easier and less invasive, developed a bespoke web platform to enable quicker, simpler testing, achieved external accreditation for our UK and US COVID-19 testing labs, and introduced pop-up, mobile PCR testing to improve accessibility for all.

Keeping doors open
We continued our clinical trials around the world and delivered medicines to patients

Keeping minds open
We kept our employees safe through testing and bolstered the UK's national testing effort

Keeping science sustainable
We mobilised our own research to advance the development of a long-lasting antibody therapy, recognising that not everyone could receive a vaccine

Keeping employees safe globally
We partnered with Oxford University in a united endeavour to develop a vaccine made for the world at no profit during the pandemic

Over 2bn doses
More than 2 billion doses supplied so far...

170+ countries
...to over 170 countries worldwide.

2/3 of supply
Two-thirds of the vaccine supplied in the first half of 2021 went to low and middle-income countries.

35k+ tests
We test over 35,000 employees, contractors and partners for COVID-19 weekly...

38 sites
...by processing saliva samples from 38 sites across 5 countries.

25k+ miles
We run 93 weekly sample collections and 29 courier routes, covering over 25,000 miles.
We know that however innovative our science is, however effective our medicines and delivery methods are – if we are to achieve all we want to achieve, we cannot do it alone.

To address all the issues facing healthcare and achieve the scientific breakthroughs we aspire to, we need to work together, collaborating among ourselves and with others, bringing the best talent together to tackle the toughest problems.

As a business, our teams are leading the way in creating open research environments that go beyond the usual collaborative models, with academia, biotech companies, industry peers, healthcare systems and governments.

We have over 1400 active partnerships and aim to lead the industry in partnership building over the coming years, because this is a powerful source of transformational potential.
Working side-by-side with academic institutions

Our scientists work in collaboration with others in dedicated laboratories in universities and research institutions, aiming to generate high-impact science to support possible future advances in life-changing medicines.

These institutions include the AI Innovation Centre and the Karolinska Institute’s Cardio Metabolic Centre in Sweden, the Max Planck Chemical Genomics Centre III in Germany and in the UK, the Francis Crick Institute, the Functional Genomics Centre at the Miler Institute, the Antibody Alliance Laboratory with Cancer Research UK, the Medical Research Council Laboratory for Molecular Biology (MRC LMB), the Respiratory Hub at Imperial College and the University of Cambridge.

In addition, we have established a collaborative research initiative that brings together seven of the world’s foremost oncology medical centres, each with strong translational research capabilities, to expedite research in some of the hardest-to-treat cancers. The partner institutions include: Institut Gustave Roussy (France), Johns Hopkins Medicine and Memorial Sloan Kettering Cancer Center (US), Universidad de Navarra and Vall D’ Hebron Institute of Oncology (Spain), Peter MacCallum Cancer Centre (Australia) and Princess Margaret Cancer Center (Canada).

Open Innovation

Our Open Innovation programme is designed to offer a permeable research environment where scientists both inside and outside of AstraZeneca can share their ideas and collaborate on projects.

Since the programme was launched in 2014, we have reviewed more than 1000 proposals from scientists in 40 countries across six continents. Our Open Innovation collaborators have been awarded $75 million in grant funding to support their research projects using our assets, and our Open Innovation portfolio now features 35 ongoing or planned clinical trials and more than 425 pre-clinical studies.

Our Open Innovation portal makes it easy for external scientists to access all the collaborative opportunities we offer to help find ways to advance medical science together:

In addition, we have established a collaborative research initiative that brings together seven of the world’s foremost oncology medical centres, each with strong translational research capabilities, to expedite research in some of the hardest-to-treat cancers. The partner institutions include: Institut Gustave Roussy (France), Johns Hopkins Medicine and Memorial Sloan Kettering Cancer Center (US), Universidad de Navarra and Vall D’ Hebron Institute of Oncology (Spain), Peter MacCallum Cancer Centre (Australia) and Princess Margaret Cancer Center (Canada).
AstraZeneca is profoundly committed to its purpose of pushing the boundaries of science to deliver life changing medicines, and we have built our business around it.

We have three strategic R&D centres including The Discovery Centre (DISC), in Cambridge, UK, Gaithersburg, Maryland in the greater Washington, D.C. region in the US, and Gothenburg in Sweden. We also have an active R&D presence in more than 40 countries across the globe.

We have integrated R&D teams and accelerated decision making processes, and are using our unique scientific capabilities to deliver one of the most productive pipelines in the industry.

Of our 80,000 employees, more than 13,000 work exclusively in R&D. In 2020, our scientists published a total of 1,086 manuscripts, with 138 in high impact peer-review journals (impact factor >15 according to Reuters 5-year rating), compared to one in 2010.

Our business and scientific culture is diverse, inclusive and collaborative, and we do everything in our power to enable all of our people to be the best they can be.

Strategic science centres
Cambridge

Our new facility at the Cambridge Biomedical Campus (CBC) is AstraZeneca’s largest research and development centre in the UK, with more than 2000 people working across all our therapy areas, drug discovery platforms, development and commercialisation.

The power of our physical proximity to our neighbours in academia, healthcare and industry creates a porous environment where ideas and talent can be shared to drive innovation. Already the scale of our collaboration with others in the city is considerable. We have well over 200 partnerships as part of the Cambridge ecosystem, and hundreds more in the wider UK life sciences cluster.
Gaithersburg

A unique, innovative and inclusive modern campus, just a short drive away from Washington DC, our Gaithersburg facility is home to a diverse community of some 3,500 people, with the capacity to discover, develop, manufacture, and commercialise life changing medicines – all on one site.

With a team of world-renowned scientists, cutting-edge technology, and a collaborative, interactive and cross-functional scientific culture, it’s a great place to work and an exciting place to be. Our outstanding facilities and amenities promote wellness and a positive work-life balance, helping us attract and retain the best talent, while contributing to our business’s values-led and sustainable approach to R&D.

Gothenburg

With more than 2,600 employees from 70 countries, our vibrant Gothenburg site helps support the entire life-cycle of AstraZeneca medicines, from drug discovery and clinical trials, through to global commercialisation and product maintenance. In 2017, we launched Lab4Life, creating an open and truly shared research environment that goes beyond the usual laboratory model. By breaking down traditional lab walls, automating processes and driving state-of-the-art IT, we are creating novel ways of working to speed up delivery of new medicines.

Looking to the future, Gothenburg has initiated the creation of a new, global cluster for health and life sciences, as part of the GoCo Health Innovation City project, which includes the Gothenburg BioVentureHub. There are currently more than 30 external companies and one academic group co-locating with AstraZeneca at the heart of the Gothenburg site. By facilitating interactions between drug, device, diagnostics and digital health companies, we are creating a dynamic, creative and fertile environment to help unlock the power of what science can do.
Inspiring great scientists

Clearly, our ambition to take and sustain scientific leadership rests on our ability to attract and retain the best scientists. And nowhere is our determination to do this more evident than in the way we recruit, develop and inspire our people.

It’s vital that we continue to attract the brightest minds, the best talent and the boldest innovators. People who share our passion for science and our belief in its potential to re-define the possible.

In return, we offer a working environment that truly reflects our ambition to push the boundaries of science. A place that empowers and inspires. Where curiosity, innovation and collaboration flourish, where drive and determination are rewarded, and where great science comes alive.

We believe that the best science almost always comes from teams with diverse backgrounds, different skills and a broad range of experiences, and as a business, we are committed to maintaining a culture that is not only diverse and inclusive, but genuinely inspirational.

Our people impress and inspire us. Our values define and guide us.

• We follow the science
• We put patients first
• We play to win
• We do the right thing
• We are entrepreneurial
Women as Leaders
Our Women as Leaders programme supports our aim of increasing the number of female colleagues in senior scientific roles, and brings women together to discuss issues like career progression and personal development.

Since 2012, we have increased the number of women in senior roles from 25% to 44.6%. And in January 2019, AstraZeneca was the only major pharmaceutical company included in the Bloomberg Gender-Equality Index, which distinguishes companies committed to transparency in gender reporting and advancing gender equality.

AZPlus
Gender equality is also supported by AZplus, our employee resource group which aims to empower LGBTQIA+ colleagues to reach their full potential. With AZPride and the #thisisAZ campaign, AZplus has promoted inclusivity both internally and externally to encourage the recruitment of a diverse talent pipeline.

Its voluntary work led the launch of a groundbreaking cross-sector initiative, the Proud Science Alliance (PSA), which promotes LGBTQIA+ inclusion in life science and healthcare through a new website and social media channels, reaching thousands of scientists globally.

Development assignments
Providing our people with ready opportunities for development is high on our agenda and the majority of this comes from direct, on-the-job experience. From our Development Marketplace to cross-team secondments and shadowing opportunities, our programmes set out to make sure that we can continue developing the skills and capabilities to equip everyone in R&D to be the best they can be. And throughout 2019, we saw more than 80 colleagues take up assignments outside their core role to broaden their learning and experience.

Chief scientist programme
As part of our drive to continue creating great science, we are keen to work with the best scientists, both within and outside of the pharmaceutical industry. To make sure that we attract top science talent from academia, we have developed our flexible and versatile Chief Scientist Programme.

By tailoring individual arrangements to enable scientists to work with AstraZeneca R&D full-time, part-time, or on assignment from university, we promote a permeable research environment, designed to meet the needs of both individuals and institutions.

Being flexible in our approach enables scientists of the highest calibre to stay connected to their research and their universities, and work flexibly between commitments. This empowers them and us, enabling us to connect with the best scientific minds to work together in accelerating the discovery and development of life changing new medicines.

Early talent programmes
We have a portfolio of high-quality early career programmes supporting a diverse range of scientific talent. Every year, we support more than 500 young scientists – including apprentices, undergraduate and graduate placements, PhDs and post-doctoral scientists.

Postdoctoral programme
Our postdoctoral programme brings together motivated and innovative postdoctoral scientists who have a passion for ideas and a real desire to make a difference through an academic-style postdoctoral position in a global pharmaceutical setting.

The two to three-year programme funds postdoctoral projects originating with AstraZeneca scientists and clinicians from across our many different scientific disciplines and areas of research. These projects address fundamental scientific challenges that underpin drug discovery and development.

In addition, each postdoctoral scientist receives a tailored training and development programme, encompassing key skills such as presentation delivery and publication writing. This is a very valuable and well-rounded experience.

Graduate programme
Our graduate programme offers graduates the opportunity to complete three different placements in two years across R&D, focusing on delivering breadth and depth of experience. Graduates are supported in each placement by a line manager and by a mentor who remains with them throughout the programme, providing career counselling and guidance.

As well as developing technical skills by working with world-class scientists using state-of-the-art facilities, all graduates are enrolled into our Global Graduate Development Programme, where the focus is on the softer skills that are required to successfully transition into industry.
Making our science sustainable

We are a scientifically driven business with a strong global presence and as such, believe that we have a duty of care to help improve people’s health and do as much as we can to contribute to the health of the planet.

Our approach to sustainability is built around three pillars: access to healthcare, environmental protection, and ethics and transparency.

Environmental protection

We set science-based emissions reduction targets to contribute to the global fight against climate change. We are among the first seven companies globally to have our targets verified by the Science-Based Targets initiative as being in alignment with their new Net Zero Standard, the world’s first science-based certification of companies’ net zero targets in line with the Paris Agreement’s goal of keeping planetary warming to 1.5°C.

We appreciate the interconnection between our business and the wider world and strive to find innovative ways to make the most efficient use of resources and help protect our environment—aiming to manage our environmental impact across all our activities and products.

- For instance, we work in collaboration with the not-for-profit organisation, My Green Lab, to run a globally organised, locally delivered initiative, called Green Labs. Its aim is to improve the sustainability of our research labs, starting with surveys among people working in the lab environment to benchmark our current sustainability efforts. The initial phase began in 2019, with nearly 900 scientists across six different sites.

- We are also pioneering new approaches to reduce our dependence on natural resources and minimise the environmental impact of our products. Our Lab Plastics Recycling initiatives in Cambridge, for example, will save over 4.5 tonnes of plastic from incineration or landfill each year.
Access to healthcare

We are committed to improving access to healthcare by removing barriers, addressing the burden of disease across R&D, and via our ambition to make our medicines more accessible and affordable, and enable improved disease prevention and treatment.

• By maximising the value of health-related data we are moving towards accelerating our clinical trials and the delivery of potential new medicines. For example, through the adoption of Electronic Health Records (EHRs), we can access a vast and highly relevant data source with huge potential to refine or replace many clinical trial processes including patient identification, selection, trial conduct, and capture of data.

• Our ground-breaking DISCOVER CKD study uses real-world data from more than 100,000 chronic kidney disease patients across six countries to better understand the patient journey. This three-year study will analyse data which includes treatment patterns, quality of life and diet that are not captured using traditional tools. The study will help us identify gaps we may one day address with our emerging portfolio of renal therapies, shaping the future of care and reaching a broader number of patients.

Another example of helping increase access to healthcare is the Emerging Markets Health Innovation Hubs (EMIHs): integrated, open science ecosystems, operating in partnership with academia, entrepreneurs, industry, medical professionals, governmental partners and venture capitalists. EMIHs are designed to improve access to resources and technology, improve capacity for local R&D, and boost AstraZeneca’s capabilities to address local needs. The first Hub in Emerging Markets opened in Russia in July 2018, followed by Hubs in Brazil, Argentina, India, Singapore and the Gulf Cooperation Council countries, as well as mainland China, Taiwan, and Hong Kong. The Hubs have already produced tangible results, such as key cross-sector partnerships, and innovative new products, solutions and research opportunities. The connected ecosystems have also accelerated innovation by collaborating with local start-ups, complemented by a partnership with Slush – a global community of start-ups, entrepreneurs and investors.

Ethics and transparency

We are building trust in our business and our science by continuing to pursue ethical practices and by bringing a high level of integrity to everything we do.

• Our research sites and bio-hubs are inclusive and dynamic centres for innovation, designed to enable science to thrive. A good example of this is the new, global cluster for health and life science that we created in Gothenburg as part of the GoCo Health Innovation City project (see ‘R&D places and people’ on page 40), which includes our pioneering BioVentureHub. Numerous different companies and an academic group have joined us on the site, offering opportunities for cross-fertilising disciplines and ideas, and fostering progressive and holistic ways of working.

• A critical ethical issue for us is animal welfare, firstly because caring for animals’ welfare is the right thing to do, and secondly because good science depends on it. We have signed the Concordat on Openness on Animal Research in the UK, and apply the principles of openness and transparency globally. And we also follow the ‘3Rs’ – Replacement, Reduction, and Refinement – meaning that, wherever possible, we replace the use of animals with non-animal alternatives, reduce the number of animals we use by designing animal studies optimally, and refine conditions for animals to maximise their welfare.

Another example of helping increase access to healthcare is the Emerging Markets Health Innovation Hubs (EMIHs): integrated, open science ecosystems, operating in partnership with academia, entrepreneurs, industry, medical professionals, governmental partners and venture capitalists. EMIHs are designed to improve access to resources and technology, improve capacity for local R&D, and boost AstraZeneca’s capabilities to address local needs. The first Hub in Emerging Markets opened in Russia in July 2018, followed by Hubs in Brazil, Argentina, India, Singapore and the Gulf Cooperation Council countries, as well as mainland China, Taiwan, and Hong Kong. The Hubs have already produced tangible results, such as key cross-sector partnerships, and innovative new products, solutions and research opportunities. The connected ecosystems have also accelerated innovation by collaborating with local start-ups, complemented by a partnership with Slush – a global community of start-ups, entrepreneurs and investors.

We are building trust in our business and our science by continuing to pursue ethical practices and by bringing a high level of integrity to everything we do.

• Our research sites and bio-hubs are inclusive and dynamic centres for innovation, designed to enable science to thrive. A good example of this is the new, global cluster for health and life science that we created in Gothenburg as part of the GoCo Health Innovation City project (see ‘R&D places and people’ on page 40), which includes our pioneering BioVentureHub. Numerous different companies and an academic group have joined us on the site, offering opportunities for cross-fertilising disciplines and ideas, and fostering progressive and holistic ways of working.

• A critical ethical issue for us is animal welfare, firstly because caring for animals’ welfare is the right thing to do, and secondly because good science depends on it. We have signed the Concordat on Openness on Animal Research in the UK, and apply the principles of openness and transparency globally. And we also follow the ‘3Rs’ – Replacement, Reduction, and Refinement – meaning that, wherever possible, we replace the use of animals with non-animal alternatives, reduce the number of animals we use by designing animal studies optimally, and refine conditions for animals to maximise their welfare.
Some facts about R&D sustainability

Approximately
90% of our pipeline has a precision medicine approach

We have the
largest R&D pipeline
for diseases in the scope of the 2018 Access to Medicine Index

We have achieved an
8% reduction in our water use since 2015

Our Open Innovation programme has over
250,000 compounds available from our screening library

As well as iDREAM hubs in Russia, Taiwan and Brazil, we now have them in
China, Argentina, India and Hong Kong,
all designed to help improve the local capacity for R&D through collaboration.
The pace of change in healthcare is moving more rapidly than ever before, as patient populations and expectations rise, science advances, and data and technology dramatically accelerate progress.

We have always put patients first and are creating a patient-centric culture in every aspect of our work, from discovery to clinical trials, treatment delivery, and beyond. This is helping us achieve our aim of getting the right medicines to the right patients, faster than ever before.

We are transforming our business by using data, digital technologies and AI to increase the probability of success, and to discover new medicines more efficiently and deliver them more effectively.

At AstraZeneca’s R&D, we will continue to build our business’s reputation for scientific leadership by inspiring people with curious minds, harnessing data and technology, working seamlessly and inclusively, and always learning from patients.

This in turn is how we’ll attract and retain the best people and partners, to help us deliver life changing medicines. Building a diverse, inclusive, listening and inspiring culture, and making a real and sustainable difference to patients, healthcare and our wider society.

Our ambition is to transform the lives of patients with improved outcomes and a better quality of life, through more effective treatment and prevention, ultimately working toward a cure for some of the world’s most complex diseases.